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Abstract

Many composite systems are described by a tensor product and feature a notion of positivity.

Describing multipartite positive tensors is challenging for two reasons. One is the exponential growth
in the number of parameters. The second is the fact that the tensor product interacts with the positivity
cones in an intricate way. For example, it may be costly to enforce the positivity in the local terms of
the decomposition.

This thesis studies composite systems subject to positivity structures from the perspective of algebraic
geometry and computational complexity.

In the first perspective, we present a framework to decompose positive and invariant tensors so that
these properties manifest in the local terms and prove under which conditions optimizations over
such tensors are stable. We then apply this framework to positive, invariant multivariate polynomials.
Finally, we explore implications for the topology of the space of quantum correlation scenarios.

The second perspective concerns computational problems inspired by tensor decompositions. We
leverage a relation between tensor decompositions and certain linear recurrence sequences (called
moment sequences) to prove the decidability or undecidability of the positivity of such sequences.
Finally, we show that many undecidable problems in physics, computer science, and mathematics
concerning arbitrary large composite systems have bounded versions that are NP-hard.

Overall, this thesis sheds light on the algebraic, numerical, and computational properties of composite
systems, particularly on tensor product spaces, with positivity structures and invariance. It also unveils
tensor decompositions in unexpected places, to which a wealth of results can be applied.
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Introduction

To specify a theory or framework, one needs to describe its basic compo-
nents and how they are composed, i.e. how they can be combined to give
rise to other elements. A prime example lies in the postulates of quantum
mechanics, which not only detail the description of individual systems
but also their composition into larger, composite systems. It follows that
the notion of composition is thus a fundamental and essential part of a
theory.

The tensor product is a salient instance of composition found in theories
like quantum theory and probability theory. It captures the essence
of composition in systems where correlations between subsystems are
fundamental. For instance, in probabilistic settings, characterizing joint
systems requires defining probabilities for all combinations of outcomes
across subsystems.

Another crucial feature in these theories is positivity, by which the tensor
product space is equipped with a positivity structure. A certain cone of
positive elements defines valid objects in the theory. In discrete probability
theory, for instance, each outcome is associated with a nonnegative
number — the probability of that specific outcome. Consequently, only
tensors with nonnegative entries can describe probability distributions.
Similarly, in quantum theory: Open quantum systems are described by
mixed states, which are positive semidefinite matrices, establishing a cone
within the space of matrices.

Yet, tensor product structures pose challenges, notably due to the expo-
nential increase in the dimension of the system. For instance, simulating
the dynamics of a small quantum system with more than 100 particles is
impossible due to the exponential amount of degrees of freedom. If the
tensor product space is equipped with a positivity structure, additional
challenges arise due to the difficulty of verifying the positivity constraint
in the global tensors.

To address all these challenges, tensor (network) decompositions offer a
practical and powerful approach, both with analytical and numerical
applications. They describe elements in a multipartite tensor product
space by breaking them down into elementary components, enabling
the simulation of large quantum systems in a tractable way. Prominent
examples of tensor (network) decompositions are matrix product states, an
efficient representation of certain one-dimensional systems, or projected
entangled pair states, a generalization of matrix product states to higher
dimensional grids. The complexity of representing a tensor using such
decompositions is determined by the rank of the decomposition, which
reflects the number of degrees of freedom needed to represent the original
vector.

A tensor product space incorporating an additional positivity structure
introduces numerous challenges for tensor decompositions. On the one
hand, the global positivity of the tensor may not be clearly reflected in the
resulting decomposition. In other words, the positivity of the tensor is
not inherent in the tensor decomposition. On the other hand, attempting
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to reflect positivity in the decomposition can significantly increase its
complexity in the local terms representing the tensor [36].

Recently, a framework to decompose positive and invariant tensors was
introduced [37]. This framework generates tensor decompositions along
with three variations:

» Decomposition geometry: The framework offers arbitrary decom-
position geometries, each mimicking a structural arrangement
resembling tensor networks. The geometry is determined by a
weighted simplicial complex.

» Explicit positivity: The decompositions can be made explicitly
positive in various ways. They have to ensure that the resulting
tensors have the required positivity constraint.

» Explicit invariance: For tensors invariant under permutations of
the local systems, we introduce constraints on the local elements in
the decompositions that lead to explicitly invariant global tensors.

In this thesis, we investigate this decomposition framework from two
perspectives:

» Applications: Is there an operational interpretation of positive
tensor decompositions? In other words, do positive tensors that
admit a certain decomposition have an interpretation beyond their
mere mathematical representation? We prove that tensors that
attain particular decompositions correspond to specific correlation
scenarios in quantum information (Chapter 3). We also introduce
a novel framework inspired by positive tensor decompositions
to decompose positive, multivariate polynomials into univariate
ones. This framework tracks the positivity and invariance of the
polynomials in local (univariate) polynomials (Chapter 5).

» Approximations: How do tensor decompositions behave under
approximations? In particular, is the rank a stable parameter, or
can it collapse for small approximations? We prove that positive
and invariant tensor decompositions can exhibit instablities when
subjected to approximations. We also elucidate the implications of
this instability for optimization strategies and correlation scenarios
in quantum information theory (Chapter 4).

We also explore the relationship between positivity and large systems,
like those present in the tensor product, from the computational com-
plexity perspective. Specifically, multipartite tensor product spaces with
positivity constraints share properties and challenges with other large
systems. We demonstrate that specific tensor decompositions give rise
to what are known as moment sequences, and verifying the positivity of
these decompositions corresponds to solving the positivity problem for
these moment sequences. The computational complexity results for such
tensor decompositions offer a novel perspective on the positivity problem
for arbitrary moment sequences, specifically for linear recurrence sequences.
Moreover, we show that a specific property of tensor decompositions —
the bounded version of an undecidable problem becomes NP-hard — ap-
plies to various problems in quantum information, quantum many-body
physics, mathematics and computer science.

This thesis is divided into two parts (see also Figure 1.1). In the first
part, we provide a comprehensive review of the framework for decom-



Part I Part II:
Decomposing positive Computational problems
and invariant tensors motivated by

tensor decompositions

Applications: Moment membership:
» Correlations (Chapter 3) » Complexity (Chapter 7)
» Polynomials (Chapter 5)

Approximations: Undecidable problems:
» Stability (Chapter 4) » Bounding (Chapter 8)

posing positive and invariant tensors [37]. We study its stability under
approximations and explore its applications to correlation scenarios and
polynomial decompositions. The second part focuses on demonstrating
how computational complexity results for positive tensor decompositions
inspire various questions in computational complexity, especially when
combining positivity and large systems.

Let us now give a brief overview of the specific questions, results, and
methods in the different parts and chapters of this thesis.

Part I: Decompositions of Positive Tensors:
Approximations and Applications

In the first part, we review the framework to decompose positive and
invariant tensors, introduced in [37] (Chapter 2). Building upon this
framework, we present three results based on [74] and [39].

This part intersects two fields: (semi-)algebraic geometry and quantum
theory (see Figure 1.2). Specifically, we relate tools from algebraic ge-
ometry, like the border rank of a tensor, with concepts in quantum
information and quantum many-body physics, like correlation scenarios
and tensor network decompositions of mixed states. Conversely, we show
that the tensor (network) decompositions initially conceived for quantum
many-body systems give rise to a novel family of decompositions for
positive polynomials, which are the main characters in semi-algebraic
geometry.

Let us now elaborate on the questions and results in each chapter.

Tensor decompositions and correlation scenarios (Chapter 3). What
probability distributions can emerge from such shared resources when
multiple distant parties share a particular class of quantum states? Entan-
glement within the shared state determines the strength of correlations
from the probability distributions arising from measuring the state locally.
For instance, without any shared resources, the resulting probability
distributions can only be independent.

Figure 1.1: Structure of this thesis. In the
first part, we study the framework to de-
compose positive and invariant tensors
(introduced in [37]) from the perspec-
tives of approximations and applications.
In the second part, we study two ques-
tions in computational complexity mo-
tivated by known computational results
for tensor decompositions.
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We show that positive tensor decompositions relate to particular correla-
tion scenarios. Specifically, we prove that positive tensors with bounded
ranks correspond to probability distributions that arise via local measure-
ments from quantum states with a specific entanglement structure.

This correspondence provides us with both an operational interpretation
of the decomposition framework and a means to link properties of tensor
decompositions. This link will be further explored in Chapter 4.

Instabilities of tensor decompositions (Chapter 4). A crucial aspect of
tensor decompositions is their sensitivity to approximations, governed by
a defining parameter: the rank of the decompositions. When the rank of a
tensor is low, fewer degrees of freedom suffice to express the tensor. For
this reason, the rank is often used as a parameter to upper bound the cost
of representing tensors in numerical simulations. For instance, to make
an optimization problem over tensors tractable, one relaxes the problem
by only optimizing over the set of tensors with a bounded rank.

Unlike matrices, whose matrix rank remains stable under slight pertur-
bations, the tensor rank can collapse for arbitrarily small approximation
errors. This leads to undesirable properties for fixed-rank approxima-
tions of tensors, like instability of optimization problems. We show this
instability by introducing the border rank of a tensor, a well-known
rank notion from algebraic geometry, and enrich it with positivity and
invariance constraints. The border rank of a tensor measures the best
way to represent a tensor up to arbitrary small approximations. If the
border rank of a tensor is strictly smaller than its original rank (indicating
that arbitrarily good approximations of the tensor can be represented
more efficiently than the exact tensor), then the tensor decomposition is
instable.

Finally, we relate this instability with the correlation scenarios presented
in Chapter 3. The instabilities on the tensor side lead to constraints on
the feasibility of testing resources from finite samples.

Polynomial decompositions inspired by tensors (Chapter 5). Moti-
vated by the tensor decomposition framework, we introduce a novel
approach to decompose multivariate polynomials, which explicitly show-
cases their invariance and positivity. The symmetry with respect to
permutations of variables specifies the invariance and the notion of
sum-of-square polynomials specify the positivity in the space of mul-
tivariate polynomials. We show that these polynomial decompositions
behave very similarly to the original tensor decomposition framework.
Specifically, we prove that they parametrize the entire space of positive
and invariant polynomials in certain situations. Moreover, we show that
separations between ranks appear as well.

Part II: Computational Aspects of Tensor Decompositions
and Beyond

Many tensor (network) decomposition problems are very hard to solve on
a computer. Even worse, some of these problems are even undecidable,
i.e. there is no algorithm that solves them. In the second part of this



computational

Chapter 7 complexity theory

Chapter 8

(semi-)algebraic

quantum
geometry

theory

Chapter 4, Chapter 5

thesis, we introduce problems and questions motivated by computational
aspects of tensor decompositions.

First, we show that certain tensor decompositions give rise to so-called
matrix moments. Second, we show that the computational behavior of
many large systems is already known for tensor decompositions, namely
undecidable problems give rise to NP-hard bounded versions.

Positivity of matrix moments (Chapter 7). Matrix moment sequences
are sequences of the form

1 tr(A")

where A is a matrix and tr is the trace of a matrix. While these matrix
moment sequences are usually considered over matrices with real or
complex entries, they also generalize to matrices with entries that live in
aring (i.e. a structure that allows only for multiplication and addition but
not inversion). This generalization also includes, for example, a particular
class of tensor decompositions by choosing a specific ring.

Moment sequences are particular instances of so-called linear recurrences
sequences which find applications in many different contexts. We show that
the undecidability of a particular tensor decomposition problem gives
rise to an undecidable problem for moment sequences and, therefore,
also for linear recurrence sequences. Moreover, we prove that specific
problems for these moment sequences remain decidable.

In this chapter, we use tools from semi-algebraic geometry to prove the
decidability of specific moment membership problems.

Bounded versions of undecidable problems (Chapter 8). Many prob-
lems in physics, mathematics and computer science have been proven
undecidable. All these problems share a common theme: There is a
parameter in the problem statement that can be arbitrarily large. In the
example of tensor network decompositions, this parameter is the number
of tensor product spaces; these problems ask for properties of tensor
decompositions of arbitrary size.

Figure 1.2: This thesis applies tools from
computational complexity theory, semi-
algebraic geometry, and quantum the-
ory. In Chapter 4, we study tensor (net-
work) decompositions from the perspec-
tive of algebraic geometry by computing
their border ranks. In Chapter 5, we ap-
ply tensor decompositions to introduce
a novel type of polynomial decomposi-
tions that inherits positivity and invari-
ance. In Chapter 7, we apply tools from
computational complexity theory and
semi-algebraic geometry to prove that
the moment membership problem is de-
cidable, and in Chapter 8, we show that
many bounded versions of undecidable
problems in quantum information the-
ory are NP-hard.
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What happens to the complexity of the problem if this parameter is
bounded? In Chapter 8, we show that many bounded versions of un-
decidable problems that arise from bounding the parameter become
NP-hard. Specifically, we elucidate how the proof for undecidable prob-
lems can be leveraged to prove the NP-hardness of the bounded versions.
While this was already known for several tensor network problems [36,
, 108], we extended this principle to many other problems in mathe-
matics and physics. For this reason, the tools used in this part are at the
intersection of computational complexity theory and quantum theory.



PART I

DecomMPoOsITIONS OF POSITIVE TENSORS:
APPROXIMATIONS AND APPLICATIONS






A framework to decompose
positive and invariant tensors

The tensor product is a mathematical construct that models the compo-
sition of single systems into a joint system in many theories, including
quantum theory and probability theory. In simple scenarios, a tensor
product can be understood as a collection of scalar values (for example,
real or complex numbers) in a multi-dimensional array. The simplest
examples of tensors are one-dimensional arrays, often referred as vec-
tors

(ai)izl,...,d = (ayap ... a).

Expanding this concept to the two-dimensional realm yields bipartite
tensors, known as matrices

a1 412 - aid

az1  ax
(”ij)i,j:L...,d -

am add

Analogously, n-partite tensors are represented by n-dimensional arrays

@),
where every entry is a scalar (see Figure 2.1).

Multipartite tensors encounter a significant challenge: their degrees
of freedom grow exponentially with the system size. While a single
d-dimensional vector is uniquely defined by d scalar values, an n-partite
tensor with each part having a local dimension of d necessitates d”
distinct parameters. Tensor decompositions offer a strategies to represent
specific tensors more parsimoniously.

Take for example the n-partite tensor of the following form:

by -

aj; ) +Cj

1 n

This particular tensor requires only 7 - d distinct scalar values to fully
parametrize the n-partite tensor. Tensors structured in this manner
are termed elementary. The conventional tensor decomposition involves
breaking down tensors into a combination of elementary tensors (as
depicted in Figure 2.2). The count of elementary tensors needed to

Matrix . .
Scalar Vector . . Tripartite Tensor
(Bipartite Tensor)

2.1  Basic definitions . . . . . .. 10

211 The tensor product . ... .. 1

2.1.2  Positivity structures on tensor
product spaces . . .. ... .. 12

2.2 The building blocks to
decompose tensors . . . .. 14

2.21 Weighted simplicial com-
plexes . ............. 15

2.2.2 Group actions on weighted
simplicial complexes . . . .. 16

2.2.3 Examples of weighted sim-
plicial complexes with group
actions . . ............ 18

2.3  Positive and invariant
decompositions . ...... 20

2.3.1 Invariant tensor decomposi-
tionsandranks . .. ...... 20

2.3.2 Positive tensor decomposi-
tions ............... 24

2.3.3 Inequalities of ranks. . . . . . 28
2.3.4 The structure tensor |Q),) . . 28

2.3.5 Positive matrix tensor decom-
positions . . .. ......... 29

Figure 2.1: From scalars and arrays to bi-
partite and tripartite tensors. A scalar
is a single number, represented by a
box in the figure. A vector in a finite-
dimensional vector space can be under-
stood as one-dimensional array of scalars.
A bipartite tensor is a two-dimensional
array, a tripartite tensor is a three dimen-
sional array. Similarly, a n-partite tensor
is a n-dimensional array. Of course this
is only possible if a basis is chosen in the
vectorspaces.
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Figure 2.2: A tensor admits a decompo-
sition into a sum of elementary tensors,
where each elementary tensor (gray) is
specified by a vector for every axis. For
tripartite tensors, an elementary tensor
is specified by three vectors.

1: We will also often make use of IR-
vector spaces. The construction of the
tensor product space does not rely on
the specific choice of the ground field.

2: In quantum information, it is often
customary to begin counting from 0.
Here, we adopt the convention of count-
ing from 1 to d for the sake of readability.

decompose a tensor is known as the tensor rank. This parameter in
particular serves as a complexity measure for the tensor.

Tensors frequently possess an inherent positivity structure. Positive tensors
form a subset of tensors that exhibit additional properties typical of
positive elements. For instance, positive tensors retain their positivity
when multiplied by a positive factor or when combined with another
positive tensor. Note that the global positivity of a tensor typically does
not manifest in the individual local elements, i.e., the elementary tensors.
Consequently, this absence of local reflection does not guarantee the
overall positivity of the global tensor.

In this chapter, we present a framework to decompose positive and
invariant tensors. We will utilize this framework to show the following
results in the following chapters of this part:

» Positive tensors describe certain correlation scenarios within quan-
tum information theory. Particularly, the count of elementary ten-
sors in a positive tensor decomposition serves as a measure of
correlation inherent in multipartite probability distributions.

» When subjected to approximations, positive and invariant tensor
decomposition methods are susceptible to instability. Specifically,
the count of elementary tensors may diminish when tolerating
minor approximation errors. This phenomenon entails instabilities
in numerical optimization processes for tensors.

» The tensor decomposition framework gives rise to a novel frame-
work to decompose multipartite, positive polynomials.

2.1 Basic definitions

In the following, we introduce the basic definitions of the tensor product
in vector spaces and the notion of a positivity structure on tensors.

Throughout this thesis, we make use of the braket notation for vectors.
In particular, we denote an element in a C-vector space' V by

|v) € V

with its dual element is given by (v| € V*. Applying a linear operator
A:V — Wto |v) is denoted by A |v). Applying an element in the dual
vector space (w| € V* to an element |v) € V is denoted by (w | v).

We denote the standard basis of C/ by [1) ..., |d).2If V = Mat,(C), then
the standard basis is given by elements |i) (j| fori,j = 1,...,d. Moreover,
for a matrix A € Mat,(C) the entry at position (i, ) is determined by

tr (Alj) (i]) = (i| Alj).



2.1.1 The tensor product

Following the intuition of tensors depicted in Figure 2.1, the tensor
product of the finite-dimensional vector spaces C? @ C* is the vector
space spanned by the basis vectors

|j1/j2> for j1,jo=1,...,d

®n
and the n-partite tensor product space (Cd ) is spanned by the basis
vectors

|j1,...,jn> for jl,...,jnzl,...,d

We now give a brief overview of the construction of the tensor product
for arbitrary vector spaces. Let V, W be two vector spaces. Consider the
vector space Q spanned by the basis vectors

(Jo), |w)) € V x W.

Note that Q is always infinite-dimensional® as for |v1) # |0v2), the
elements (|v1),|w)) and (|vy), |w)) are linearly independent, even if
|v1) = A |v2). Consequently, we need to consider a specific subspace of
Q to define the tensor product V ® WW—a subspace where examples
like the one above are linearly dependent.

Let £ C Q be the subspace spanned by the following elements

(Jo1) + [02), [w)) = ([o1), [w)) — (|v2) , [w))

([9), [w1) + |w2)) = (o), [w1)) = ([0}, |w2)) 1)
(A o), [w)) = A(lo), |w))
([o), Alw)) = A([v), [w))

forevery A € C, |v),|v1),|v2) € V, |w), |wy), |wz) € W. This space
allows us to construct the tensor product space of V and W.

Definition 2.1.1 (The tensor product space)
The tensor product space of V and W is defined by

VoW :=Q/L

where Q/ L is the quotient of Q by L. The representatives in Q/L
of elements (|v) , |w)) € Q are denoted by

[0) ® |w) .
Note that according to Equation (2.1), the tensor product of vectors is
bilinear, i.e.
[0) @ ([w1) +Alwz) ) = [0) @ [ws) + A o) @ [ws) .

This holds true for every |v) , |w1), |w,) and A, and similarly for the first
component.

While this construction of V ® W is very abstract and non-constructive,
the following proposition elucidates the behavior of the tensor product,

2.1 Basic definitions | 11

There are also alternative constructions
of the tensor product using the univer-
sal property. For details on the different
approaches, we refer to [79, Chapter 16].

3: Of course assuming that V, W are
nontrivial.

The quotient space is defined as follows:
Every subspace U C V of a vector space
gives rise to an equivalence relation

X~y &=x—yelu

The set V /U is defined by all equivalence
classes induced by ~. These equivalence
classes define themselves a vector space.
Intuitively, the quotient space arises by
identifying all elements in I/ to be zero.
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particularly showcasing the intuitive properties of tensor products of
C:

Proposition 2.1.1

Let V and W be vector spaces with bases {|v;) }iez and {|w;) } je 7
respectively. The tensor product space

Yeow
is the vector space spanned by the basis vectors:

{|o) @ |wj) : (i,7) €T x T}

Proposition 2.1.1 makes apparent that the vector space dimension is
multiplicative, i.e.

dim(V @ W) = dim(V) - dim(W).

If V, W = C1, then the standard basis vector define a basis on C? @ C?
givenby |i) ® |j) fori,j € {1,...,d}. We will denote these vectors by

li,j) = ) @ j)

for simplicity. Similarly, the basis of an n-partite tensor product space is
spanned by all combinations of basis vectors of the local vector spaces.

In the case V, W = CY, the bipartite tensor product can also be realized
using the matrix space Mat;(C). Specifically, identifying

lj1,j2) = lj1) (2l

every matrix T € Mat(C) corresponds to a tensor |T) € C? ® C? as

follows:
d

IT) = > (il Tlj2) lja, j2)
Ju2=1
and vice versa. This correspondence reflects the representation of a
bipartite tensor as a matrix, illustrated in Figure 2.1.

2.1.2 Positivity structures on tensor product spaces

Vector spaces often come equipped with a positivity structure. In the
following, we give three examples of tensor product structures with
positivity constraints.

For a vector space V, we call C C V a positivity structure if it satisfies

» If [v) € C, then A |v) € C for every A > 0.
» If |v),|w) € C, then |v) + |w) € C.

In other words, C is a convex cone, i.e. positive combinations of elements
in C are again contained in C.

In this thesis, we will study three concrete examples of positivity struc-
tures in tensor product vector spaces arising from different applications:



Multipartite probability distributions: Providing a discrete probability
distribution merely requires specifying the probabilities of the outcomes.
Specifically, if X is a random variable taking values 1,...,d, we can
associate the probabilities P(X = j) with a vector |T) € R? such that

P(X=j)=(IT).

Extending this concept to probability distributions involving multiple ran-
dom variables Xj, ..., X;, each ranging from 1 to d, the correspondence
expands to

P(Xl :jlr---/Xn :jn) = <j1/-~~rjn|T>

for a tensor
T eR'®--- @R =2 RY.

Tensors that represent probability distribution are entrywise nonnegative,
ie.
(Ji,---,jn | T) = 0.

This establishes a positivity structure within the multipartite tensor
product space.

Multipartite mixed quantum states: Following the axioms of quantum
mechanics, physical degrees of freedom are described by a pure quantum
state—a vector |¢p) in a Hilbert space H. The concrete choice of the
Hilbert space H depends on the system; for instance, a fixed-in-space
spin-1 particle is modeled by H = C2.

The composition of multiple quantum systems is captured by the tensor
product. For example, the joint system of n spin—% particles is described
via a state

ly)eC?®-- - 0C2=C?.

In practice, one often has access only to a part of the entire physical
system. Instead of defining a wave function for the entire system, a
complete description of the reduced system is given by mixed states, also
called density matrices. These are described by a positive semidefinite
(psd) operator p € B(H) with tr(p) = 1. As in the pure state picture,
combining open quantum systems is accomplished through the tensor
product. For instance, a single spin—% particle is described by a psd
2 x 2 matrix p € Psd,(C), while an open system of n spin—% particles is
described by a state

p € Hery(C) ® - - - @ Herp(C) = Herpn (C) with p = 0.

Density matrices represent a positivity structure on the multipartite
matrix tensor product space, as the space of psd matrices forms a convex
cone.

Multivariate polynomials: Multivariate polynomials emerge as a tensor
product structure of univariate polynomials. A univariate polynomial
(in the variable x) is a linear combination of monomials x¥. In essence,
the space of polynomials in x, R[x], is the vector space generated by the

2.1 Basic definitions
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monomial basis {x*: k € IN'}. When we combine monomial bases in two
variables, we once again acquire a monomial basis:

{xky’: k¢ € N}.

These monomials span the space of bivariate polynomials R[x, y|] repre-
senting polynomials of the form

n
k,
p= Z Ck’gx y.
k(=1

where ¢ o € R. With Proposition 2.1.1 this demonstrates that

R[x,y] = Rlx] © R[y].

Multivariate polynomials embody multiple positivity structures. One
example are nonnegative polynomials, which are polynomials satisfying

p(x,y) >0 forallx,y € R.

Another example is the cone of sum-of-square polynomials, i.e. polyno-

mials of the form .
p=>_a.
t=1

For a detailed discussion of positivity structures on multipartite polyno-
mials, we refer to Chapter 5.

2.2 The building blocks to decompose tensors

Multipartite tensors are, in general, very costly to represent. This follows
from the exponential increase of the vector space dimension with respect
to the number of local spaces.

Elementary tensors are specific elements that are easy to represent. An

®n
elementary tensor in (Cd)

IT) = ‘v[l]>®...®|v[n]>

is specified by 1 vectors in C?. Therefore, we only need 7 - d scalars to
describe an elementary tensor. Every tensor admits a decomposition into
elementary tensors, called a tensor decomposition, i.e.

)
1) =3P - o[l
a=1

The minimal parameter r realizing such a decomposition, called the
tensor rank of |T), is a measure of the cost of describing the tensor, as it
enables representing the tensor using only r - 1 - d scalars. Consequently,
tensors with a low tensor rank can be efficiently represented.

There are many variants of tensor decompositions with other summation
geometries, local positivity constraints, or local invariance constraints.



2.2 The building blocks to decompose tensors

For example, one can decompose a tensor via a cyclic arrangement of

indices
r

T = Y Jolle) @0 @il .

a0y =1

This decomposition is known as the matrix product state (MPS) decom-
position, and is widely applied in quantum many-body physics [89, 90,

7 ]'

Introducing local symmetry constraints such as

jolls) = [o))  foreveryi,je {1,...,n} (2.2)
gives rise to a global symmetry constraint. Concretely, Equation (2.2) leads
to translational invariance of the |T), i.e. invariance under translations of

the local tensor factors.

Introducing local positivity constraints such as
(ot >0 foralla,ij (2.3)

gives rise to a global positivity constraint. Concretely, Equation (2.3) guar-
antees that the global tensor |T) is entrywise nonnegative.

In the following we review a framework for decomposing positive and
invariant tensors based on weighted simplicial complexes. Weighted
simplicial complexes specify a geometry in the decomposition (i.e. a spe-
cific arrangement of summation indices). Equipping this geometry with
an additional symmetry constraint via a group action on the weighted
simplicial complex (WSC) will be the basic building block to define
invariant and positive decompositions. The idea of this framework is
based on [37] and has been used since then in [38, 39, 74].

In Section 2.2.1 and Section 2.2.2 we introduce the basic machinery of
weighted simplicial complexes and group actions. Finally, in Section 2.2.3,
we will present numerous examples of WSC that will appear throughout
this thesis.

Throughout this thesis, we denote the set {1,...,n} by [n].

2.2.1 Weighted simplicial complexes

A weighted simplicial complex is a mathematical structure that models
relations between different objects, similar to graphs. More specifically, it
consists of vertices representing the objects and facets, which connect the
different vertices.

Definition 2.2.1 (Weighted simplicial complex)

A weighted simplicial complex (in short WSC) Q) on the set [n] is a
function

Q:P(n]) >N

which satisfies the condition

$1C S Cnl = QS1) divides Q(S,)

15
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4: ie. forevery T D S, we have O(T) =
0

5: We refer to Section 2.3 for definitions
and examples of these tensor decompo-
sitions.

6: A multiset with elements in A is a
function m : A — IN, where IN is the
set of positive natural numbers. Each el-
ement a € A is contained in the multiset
precisely m(a) times.

7: The identity axiom states that
a(e,x) = x forall x € X and compatibil-
ity means that a(g, a(h,x)) = a(gh, x)
forallg,h € Gand x € X.

If O(S) € {0,1} for every S C [n], we call Q) a simplicial complex.

A subset S C [n] such that Q)(S) # 0is termed a simplex of (). We assume
that for every i € [n], the set {i} is considered a simplex, which we call a
vertex of ().

If S is maximal with respect to inclusion*

the set of facets by

, we call it a facet. We denote

F = {F C [n] : F facet of O}.
Moreover, we define the set of facets on {i} by
Fi={FeF:icF}

The sets 7 and F; will play a central role for defining tensor decomposi-
tion.>

Restricting the functi~on Q) to F and F; makes these sets into multisets®,
which we denote by F and F;. For simplicity, we will treat these multisets
analogously to sets. Therefore, for any facet F, the value Q)(F) represents
the multiplicity of F in the WSC.

Note that a WSC is a special type of multihypergraph [20], where each
simplex is contained within a facet, and the multiplicities of the simplices
adhere to the condition in Definition 2.2.1. Consequently, a WSC can be
understood as a properly structured multihypergraph. We refer to the
examples in Section 2.2.3 to elucidate this analogy further.

2.2.2 Group actions on weighted simplicial complexes

In the following, we introduce the concept of a group acting on a WSC
Q). Essentially, a group acting on a WSC consists of a permutation of
vertices that is compatible with the structure of the WSC, similar to a
graph-automorphism for graphs [20].

We say that a group G acts on a set X if there is a map
a:GxX—=X

that satisfies the identity and the compatibility axiom.” For convenience we
will use the shorthand notation gx for a(g, x).

In the following we define a some basic notions regarding group actions.

Definition 2.2.2 (G-invariant functions)

Let f : X — Y be a function and let G act on X. We say that f is
G-invariant if

f(gx) = f(x) forallx € X,g € G.

Intuitively, a G-invariant function remains the same under group actions
on the X.
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Moreover, for a function f : X — Y and a group action G on X, we define
the shifted function
$f: X =Y

X = f(gflx). @4

By definition, we have that 8" f = & (h f ) as well as °f = f. Moreover,
the map
8. YX 5 yX: fis 8f

is a bijection.?
We now introduce the notion of a group action on a WSC ().

Definition 2.2.3 (Group actions on WSC)
A group action of G on a WSC () is given by the following two parts:

» An action of G on the set [1], such that () is G-invariant with
respect to the action of G induced on P([n]), i.e.

Q(gA) =Q({ga:a € A}) = Q(A).

This group action then reduces to a group action on the set F.

> A compatible refinement of the group action G to the multiset
F . In other words, a group action G on F such that the collapse
map

c:F—F
is G-linear, i.e. c(¢F) = gc(F) forallg € Gand F € F.

In simple terms, a group action on a WSC outlines how the vertices [#]
can be rearranged while preserving the original structure of the WSC.
If the WSC contains, in addition, multi-facets, then the action of the
group on the multi-facets needs to be refined since the rearrangement of
the vertices does not uniquely determine the permutation of the facets
anymore.

Now, we introduce two crucial properties of group actions essential for
characterizing tensor decompositions based on WSC. Initially, we define
these concepts for general group actions and subsequently refine the
definitions for actions tailored to WSC.

Definition 2.2.4 (Free and blending group actions)
Let G be a group acting on a set X.

(i) G is free if the only stabilizer is the identity, i.e. Stab(x) = {e}
for every x € X, where

Stab(x) := {g € G: gx = x}.
(ii) G is blending if for every choice g1, ...,¢n € G such that

{§11,§22,...,gun} = [n]

8: YX indicates the space of functions
from X to Y. These functions can alterna-
tively be represented as a tuple indexed
by X with values in Y, hence the notation.
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9: These examples give rise to conceptu-
ally distinct types of tensor decomposi-
tions (c.f. Section 2.3.1), each exhibiting
entirely different characteristics and be-
haviors (see, for instance, Chapter 4 or
Chapter 5).

Table 2.1: Which properties of Defini-
tion 2.2.5 are satisfied for the examples
of (0, G)? This table shows when the
simplex with full symmetry group, the
line and the double edge with the cyclic
group, and the cycle with the cyclic
group are free, blending, or external.

there exists g € G such that gi = g;i for every i € [n].

Intuitively, a free group action consists of permutations that keep no
element fixed. For example, if X = Zj is the set of natural numbers
0,...,k — 1 with addition modulo k, then addition

Ly X Ly — Ly (c,a) — ¢ +amod k

is a free group action on Z.

Definition 2.2.5
A group action of G on a WSC () is called:

(i) freeif the action of G is free on F ; _
(ii) blending if the action of G is blending on F;
(iii) external if for all ¢ € G such that gi = i we have that

gF =F forevery F € Fi.

We now present examples of WSC () and group actions G on (2, which
satisfy various such properties.

2.2.3 Examples of weighted simplicial complexes with
group actions

We now construct various examples of WSC that play a central role in
this part of the thesis:’

» The simplex

» The line with n vertices
» The cycle with n vertices
» The double edge

Furthermore, we illustrate instances of group actions on these WSC.
A summary of which properties apply to the examples is provided in
Table 2.1.

free blending external
(Zn,Cn) no yes yes
(An,Ca) yes (n odd) yes (n < 3) yes (n even)
no (n even) no (n > 4) no (n odd)
(©y,,Cy) yes no yes
(A, Cy) yes yes yes

Example 2.2.1 (The simplex)

The simplicial complex Q) = X, that maps each subset of [n] to 1 is
called the simplex. In particular, this WSC contains precisely one facet

F = {[nl}-
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Forn = 5, the hypergraph corresponding to X, is illustrated in Figure 2.3.
It is worth noting that any group action on [n] results in a trivial group
action on F, thereby defining a group action on %,,.

Note that the action of the full permutation group S, on [n] is blending.
Moreover, the trivial group action G = {e} is the only free group action,
and every group action on X, is also external.

Example 2.2.2 (The line with 1 vertices)

For n > 1, the line with n vertices is the simplicial complex () = A,
given by the graph shown in Figure 2.4. Specifically, the set of facets is
given by N

F=F:={{1,2},{23},....{n—1,n}}

and therefore consists of n — 1 elements. The only non-trivial group
action on Ay, is the cyclic group with two elements G = C;. Here, the
generator reverses the order of the vertices, meaning that vertex i is
mapped to vertex n + 1 — i. This action is free if and only if n is odd.!”
Moreover, it is blending if and only if n < 3, and it is an external group

action if and only if 7 is even.!!

Example 2.2.3 (The cycle with 1 vertices)

For n > 3, the cycle with n vertices is the simplicial complex () = ®,
corresponding to the graph shown in Figure 2.5. Specifically, the set of n
facets is given by

F={{1,2},{2,3},...,{n—1,n},{n1}}.

One group action on ©, is the cyclic group C, that is defined by the
generator
T: i i+1 mod (n+1).

Translations of vertices induce a group action on F (see also Figure 2.5).
C, is a free and external group action on @, for every n, but it is not
blending.

Example 2.2.4 (The double edge)

A WSC can include multiple facets containing the same vertices. A basic
example showing this property is the double edge A. It comprises two
vertices {1,2} and its multiset of facets is given by F := {a, b} where
1,2 € aand 1,2 € b. The double edge is depicted in Figure 2.6.

Note that the single edge corresponds to the WSC A, = X. While Xp
has no non-trivial free group action, there is a non-trivial free group
action on the double edge. Let C; = {e¢,s} be the cyclic group with
two elements. According to Definition 2.2.3, a group action on A is a
refinement on the level of multi-sets. If sa = b, i.e. Cy flips the edges,
then C; is a free group action on A. This action is illustrated in Figure 2.6.

5

Figure 2.3: The simplex for n = 5 with its
5 vertices and its single facet {1,...,5}
connecting all vertices.

————o—
{1,2}

1 2 n—1 n
Figure 2.4: The line with  vertices. Every
facet connects two neighboring vertices.
The arrows in orange illustrate the only
non-trivial group action C; on A, which
reflects the vertices.

10: If n is even, the middle edge is a fixed
point of the action.

11: If n is odd, the group action keeps
the middle vertex fixed but permutes the
two edges connected to it.

n—1

n

Figure 2.5: The cycle with 1 vertices. A
vertex is characterized by the set of ver-
tices which are contained in it. The ar-
rows in orange illustrate the group action
C,, on A, which is a translation of the
facets.

a
[ =
1 p 2

Figure 2.6: The double edge A. Its mul-
tiset of facets is given by {a, b}, where
both facets contain both vertices.
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12: This defines a unique action on V by
linearity.

13: Each viewpoint has its own advan-
tages. While tuples are often used for spe-
cific examples, the functional approach
proves advantageous in the general set-
ting due to its greater flexibility and re-
duced technical complexity.

2.3 Positive and invariant decompositions

In the following, we define the notion of an (Q), G)-decomposition, a tensor
decomposition based on a WSC (), and a group action G on Q).

Let Vi, ...,V be vector spaces, where we call V; the local vector space at
site i, and define the global vector space as

V=YV - ®Vy

where ® denotes the algebraic tensor product. For this reason, every
element in V is a finite sum of elementary tensors. Note that these vector
spaces do not have to be finite-dimensional in general; in Chapter 5, we
study the example of the infinite-dimensional vector space V; = R[x].

Note that any group action G on [n] induces a linear action on V by
permuting the tensor factors, if V,; = V;. More precisely, we consider
the representation

p:G— GL(V)

where the action on the elementary tensors is given by'2

0(3) [|v“]> e o |v[n]>} = o8 @ |8 @ - - - @ [l

For convenience, we will write g |v) as a shorthand notation for p(g) |v).
Further, note that we will assume throughout this work that V; = V;;
therefore, every group action G on [n] induces an action on V. All
results presented also apply for different V; respecting the symmetry
constraints.

Note that the set of all functions YX can be written up as a tuple if X is
finite. For example, if 7 is a finite index set, then for a WSC (), the set

I]:
can be understood as a set of tuples
(@F)pe 7

where every entry is indexed by a facet F € F and takes values in Z.13

Fori € Z, the set

77
can be analogously understood as tuples, but now only indexed by facets
containing the vertex i. Representing « in the functional way, allows to

define for & € Z7 the restriction

=~ e 717

a'i = a|]“,‘

2.3.1 Invariant tensor decompositions and ranks

We define the notion of an (Q), G)-decomposition. Afterwards, we provide
explicit examples of these decompositions for the simplex, the line, the
cycle, and the double edge.



2.3 Positive and invariant decompositions

In essence, we introduce a sum of elementary tensors, where the local
vectors of these tensors possess multiple summation indices. The orga-
nization of these indices is mirrored by WSC, such that each facet of
the WSC corresponds to one summation index. Furthermore, the group
action from G on the WSC introduces a symmetry within the elementary
tensors, according to the arrangement of summation indices.

Definition 2.3.1 ((Q), G)-decomposition)
Let |v) € V. An (Q, G)-decomposition of |v) is given by a family of

local vectors i
1
( |v/3 > )/SeIfi

for every i € [n] with \v?) € V,, satisfying the following:

» Decomposing |v), i.e.

o) =3 k)@ ® o) (2.5)

aeTlh

» Invariance: For every i € [n], ¢ € G, and B € Z7i, we have

055 = Iog)

where 8 is defined in Equation (2.4).

The smallest cardinality of the index set Z among all possible (Q}, G)-
decompositions is called the (Q), G)-rank of |v), denoted by

rank(QlG) (|’U>)

For convenience, we will call (Q), G)-decompositions for trivial groups
G = {e} just Q-decompositions and denote its corresponding ()-rank

by
rankq (|v)).

Intuitively, an (Q), G)-decomposition is a way of decomposing |v) that is
explicitly invariant. Specifically, we have that

— [g1] [gn]
g|U> - EE: |U£L1>G§' "6§|U;Z:>

aEIf
_ (1] gn]
g B ® P ® B
ezz:f'vg((x 11:()‘1>> Ivs((s 11x)|n>>
_ (1] 1]
= %:f |v(871a)‘1> ® & |v(871a)‘n>
e
=3 e o)
aeIﬁ

where we use the invariance condition of Definition 2.3.1 in the third
equality and the fact that a +— S« is a bijection on Z* in the last equality.

We now present examples of (€, G)-decompositions by using the running
examples of Section 2.2.3. For these specific choices of (2 and G, the

21
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14: See Example 2.2.1.

15: In other words, since \j-: | =1, every

function a : F — 7 is characterized by
avaluea € 7.

16: See Example 2.2.3.

n—1 ax

n

Figure 2.7: The cycle with n vertices and
its correspondence to the summation
indices in the ®,-decomposition. The
connecting facets of the WSC represent
all summation indices. For example the
facets containing vertex 1 represent the
summation indices & and ap which are
associated to the local vectors in the first
local space.

decompositions reproduce well-known tensor decompositions and tensor
network decompositions. For simplicity, we assume that V; = C%.

Example 2.3.1 (The standard and symmetric tensor decomposition)

Let ¥, be the simplex with 1 vertices.'* The ¥,,-decomposition is given
by
r
o) =Yl @@ o)
a=1
which corresponds to the standard tensor decompositions [78, Section 2.4].
This decomposition consists of one summation index, which is reflected
by the single facet in %,,.1°
For the full permutation group S, the (£, S,)-decomposition is is
given by

o) = [0a) ® - @ |va)
a=1

i.e. all local vectors are identical. This follows from the invariance
condition of Definition 2.3.1

04) = [0y = [0} foralli,j € [n].

This decomposition is known as the symmetric tensor decomposition [78,
Section 2.4]. The corresponding rank is called symmetric rank.

Example 2.3.2 (Matrix Product States I)

For n > 3, let ©, be the cycle with n vertices.!® The ©,, -decomposition
is given by

r

=S Pl e e o) (2.6)

1, p=1

Here, the index a; represents the entry of the (ar) rez7 tuple indexed
by F = {i,i + 1} where addition is modulo n + 1. Since all vertices are
contained in two facets, we have two summation indices for every local
vector.

This decomposition is known as the MPS decomposition. Usually MPS
are presented parametrizing the coefficients of the tensor in a fixed basis,
ie. finding a description of v}, _ i for

d
|Z)> = Z vjll---,jn ‘jlr e ,jn> .

jlr---rjnzl
To obtain this representation, let A][-i] € Mat, (C) with

(ol AT 1By = (j|olly).
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Then, we obtain

d

o)=Y

fl,~~-/jn:1

W AR A
tr Ay Al Al i)

which corresponds to a MPS decomposition with closed boundary
conditions. Specifically, rankg, (|v)) corresponds to the bond dimension
of the MPS. Tensor networks are often illustrated using a diagrammatic
calculus. We refer to Figure 2.8 for the tensor network diagram of
the MPS. For more details on the diagrammatic formalism of tensor
networks, we refer to [89, 22, 30].

Letin addition G = C, be the cyclic group. The (®,,, C, )-decomposition
is given by

7

)=

(Xl,...,t)(n=1

|vﬂt1,0¢2> ® ‘vﬂéz,ﬂé3> K- |lenlﬂé1> (2'7)

The local vectors in Equation (2.7) are all the same, in contrast to Equation

(2.6). This is guaranteed by the invariance condition of Definition 2.3.1.

Note that this decomposition is called the translational invariant (ti)
MPS, defined as

0) =

Z tr<Af1'Ajz"'A

jl,~--,jn:1

jn) |j1/- . -rjn>

with

(@[ Aj[B) = (jlvap)-

Example 2.3.3 (Matrix Product States II)

Let A, be the line with 1 vertices.”” The A,-decomposition is given by

r

)= >

Qg y—1=1

1 1
el e o Rl Yol ).

In this context, the index a; represents the entry of the (ar)_, 7 tuple
indexed by F = {i,i + 1}. The vertices 1 and # are only included in one
facet, reflecting that these local tensors possess only one summation
index.

This decomposition corresponds to an MPS decomposition with open
boundary conditions, as there is no connection between the last and
the first local space. This decomposition can be expressed as a tensor
network as

Z A[}] A[z . A][: 1] A["} |j1/ ~-/jn>
Jrrerjn=1

where A" € Mat,(C) fori € {2,...,n—1}, All e Cand A" € .
We refer to Figure 2.9 for a representatlon og this decomposmon via
tensor network diagrams.

431

LAm 2 ARIES - Al

I [ I
n J2 In

Figure 2.8: The tensor network diagram
of the MPS with closed boundary condi-
tions. The thick lines correspond to the
matrix contraction, the thin open lines
represent the local physical systems of
dimension d.

17: See Example 2.2.2.

31 153 Xp—1

Alll Al — Aln]

[ [ [
Ji J2 Jn

Figure 2.9: The tensor network diagram
of the MPS with open boundary condi-
tions. The thick lines correspond to the
matrix contraction, the thin open lines
represent the local physical systems of
dimension d.
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18: See Example 2.2.4.

19: Note that here the order of the sum-
mation indices is important. Specifically,
the decomposition

,
0= Z |Uv¢,ﬁ> ® |voc,,6>

a,B=1

corresponds to the double edge where
the edges are not swapped via the action
of C,. In this situation, the group action
is not free (see Definition 2.2.4).

20: Weintroduce similar positive decom-
positions for multipartite psd matrices
in Section 2.3.5 and for positive polyno-
mials in Chapter 5.

21: See Chapter 3 for details on this rela-
tion.

Example 2.3.4 (The double edge decomposition)

Let A be the double edge.!® The corresponding A-decomposition is
given by

o) = > [0l h) @ ogs)-
a,B=1

Moreover, the (A, C;)-decomposition is given by'

r

|Z)> = Z |ch,ﬁ> ® |Uﬁ,zx> :
a,B=1
Therefore, the the double edge decomposition can be viewed as an MPS
decomposition when n = 2.

2.3.2 Positive tensor decompositions

We now introduce invariant tensor decompositions tailored for tensors
that satisfy a positivity constraint. Specifically, these decompositions
inherently maintain positivity, ensuring the global tensor remains positive
under local perturbations. This is achieved by imposing additional
constraints on the local vectors in the tensor decomposition.

Specifically, we introduce decompositions for tensors in the space
V=Rig @R =R",

i.e. every local space corresponds to IR?. Moreover, we equip this space

with a notion of positivity, namely entrywise nonnegativity.?’

Atensor |T) € R ® - - - @ R? is called entrywise nonnegative, if

(Ji,---,jn|T) =20 foreveryji,...,jn €{1,...,d}.

Entrywise nonnegative tensors describe, for example, multi-partite prob-
ability distributions [80, 101]. For random variables X1, Xp, ..., X;; taking
valuesin {1,...,d}, the joint probability distribution is represented by a
nonnegative tensor, specifically:

PXi=j1,-- . Xn=1jn) = (1,---,jun|T).
We utilize this correspondence to make statements about correlation
scenarios via ranks of positive tensor decompositions.?!

In the following, we describe two notions of locally positive tensor
decompositions:

» the nonnegative decomposition
» the positive semidefinite decomposition

While the former employs entrywise nonnegative vectors as fundamental
components, the latter utilizes psd matrices as local constitutents.

These two decompositions extend well-known matrix factorizations,
including the nonnegative matrix factorization [31, , 18, 113], the
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completely positive decomposition [12], and the positive semidefinite
matrix factorization [49, 118, 112, 68]. We refer to Example 2.3.5 and
Example 2.3.7 for further details.

The nonnegative tensor decomposition

In the following, we introduce the nonnegative (Q), G)-decomposition.
Intuitively, this decomposition builds upon the unconstrained (Q, G)-
decomposition but restricts the local vectors to be entrywise nonnega-
tive.

Definition 2.3.2 (Nonnegative (), G)-decompositions)
Let |T) € R ® - - - R?. A nonnegative (0, G)-decomposition of |T)
consists of an (Q), G)-decomposition of | T)

T)= 3 ITy)) - ®|Tu)

wcTF

such that??
75} >0

for every i € [n] and B € Z7i.
The smallest cardinality of the index set Z among all nonnegative
(Q), G)-decompositions is called the nonnegative (Q), G)-rank of |T).
We denote it by

nn-rank(q ¢)(|T))-

For convenience, we call a nonnegative (), G)-decomposition for the
trivial group G = {e} just nonnegative (2-decomposition and denote its
corresponding nonnegative ()-rank by

nn-rankq (|T)).

Intuitively, a nonnegative (), G)-decomposition ensures explicit invari-
ance?® and explicit entrywise nonnegativity, since

Guoedn T = 30 GUITa) - (| T) > 0.

acT¥

Let us now review examples of the nonnegative decompositions for
specific choices of WSC () and group action from G.

Example 2.3.5 (The simplex decomposition)

Let X, be the simplex with n vertices.”* The nonnegative %,-
decomposition is given by

)
1) =S e o).
a=1

This is commonly referred to as the nonnegative tensor decomposition.
For n = 2, i.e. the single edge, this yields the nonnegative matrix fac-

22: For a vector |v) € RY, we write
o) >0

if (j|v) > 0 for everyj € [d].

23: i.e. every element that achieves an
(Q), G)-decomposition is automatically
G-invariant, i.e. ¢ |T) = |T) (see the re-
marks of Definition 2.3.1).

24: See Example 2.2.1 for its definition.
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25: See Example 2.2.3 for its definition.

torization. For an entrywise nonnegative matrix M € Mat;(IR), the
nonnegative matrix factorization is defined as

M = BB},

where By, By are d X r matrices with nonnegative entries and ( - ) is the
matrix transposition. More specifically,

r

(il Mlj2) = (jal By |&) - (j2| B2 |a)

a=1

which agrees with a ¥;-decomposition by identifying

(i, j2| T) == (1| Mja) and (| TE) == (ji| B |a) .

In particular, the column dimension of By and B, agree with the number
of elementary tensors in the decomposition of |T).
If G = S;;, we obtain the symmetric nonnegative decomposition

IT) = 1T @ ®|Ta),
a=1

i.e. all local vectors are identical.
For n = 2, this decomposition gives rise to the completely positive (cp)
matrix factorization. For a matrix M € Mat,(IR), this is defined as

M = BB,

where B is ad x r matrix. Again the minimal number of columns of B is
precisely the number of elementary tensors in the tensor decomposition.

Example 2.3.6

Let @, be the cycle with 11 vertices.?> The nonnegative ®,,-decomposition
is given by

r
1 2
T) = Z |Tﬂ[¢1}/0¢2> ® |T0[62],063> Q- |T0[é:],061> :
0q,.. =1
This is also known as a nonnegative MPS, stochastic MPS [121], or nonneg-
ative tensor train decomposition [58]. Similar to MPS, this is expressed in
the computational basis as

d
e 5wl A i

jl,---,j;1:1

using the same correspondence as in Example 2.3.2. For nonnegative

]

tensor train decompositions the local matrices A/[-l are in addition

entrywise nonnegative.
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The positive semidefinite decomposition

We now define the psd (Q, G)-decomposition. Intuitively, this replaces
the nonnegativity constraint of the local elements by positive semidefi-

niteness.

Definition 2.3.3 (Positive semidefinite (Q, G)-decomposition)

A positive semidefinite (Q), G)-decomposition consists of psd matrices
A][i] € Mat_ (C) foreveryie [n],j € [d]
with the constraint that
lgi] — (4l
(Af )g,s,g,s/ N (Af )ﬁ,,s/

decomposing |T) as
i 1 (Al
<]1/---/]Tl |T> — Z~ (Ah )IX‘ ,l’él (A]n )D{‘ ’“/
o A ny

The minimal cardinality of Z among all psd (€}, G)-decompositions
of |T) is called the psd (Q}, G)-rank, denoted by

psd-rank ¢, (IT)).

If G = {e}, we call the decomposition again just psd Q2-decomposition

and denote its corresponding rank

psd-rankq (|T)).

Again, every tensor admitting a positive semidefinite (Q), G)-decomposition

is inherently G-invariant as well as inherently entrywise nonnegative.

Example 2.3.7 (The simplex decomposition)

Let X, be the simplex with 7 vertices. The X.,,-decomposition is given by
~ (4l i
i | T) = (A.) ~~~(A<” .
<]1 Jn I Z N7 a0 In >0¢1/“2
ﬂ(l,ﬂtzzl

This decomposition has been studied before in the context of quantum
correlation and quantum communication scenarios [69].

If n = 2, the decomposition specializes to the positive semidefinite matrix
factorization [49], which is defined as

(1, 2| T) =tr ((A][}]) ) (A]Lf})t) '

If in addition G = Sy, this leads to the completely positive semidefinite
transpose (cpsdt) decomposition [40], defined as

(i, o | T) = tr (AhA§2) .

26: To see that a psd decomposition only
gives rise to nonnegative tensors, we refer
to Section 2.3.4.

While the cpsdt decomposition looks
similar to the completely positive semidefi-
nite (cpsd) decomposition

(2| T) = tr(A; Ajy),

it deviates significantly from it in its be-
havior. For example, the cpsd decompo-
sition cannot be expressed as a tensor
decomposition. We refer to [100] for de-
tails.
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27: See Definition 2.2.5 for free group
actions.

ool

Figure 2.10: Tensor network representa-
tion of a matrix multiplication (MaMu)-
tensor. The double output correspond to
the space C* @ C“.

2.3.3 Inequalities of ranks

We now briefly review the relation of the different ranks, shown in
[37] for (Q), G)-decompositions and in [40] for the X,- and the A,-
decompositions.

Lemma 2.3.1

Let |T) be a nonnegative tensor. Then, the following inequalities
hold:

(i) rank(q ) (|T)) < nn-rank( ) (|T))
(i) rankq,c)(|T)) < psd-rankq ) (|T))?
(iii) psd-ranki ) (|T)) < nn-rankq)(|T))
if G is a free?” action on Q).

For the proof of this statement, we refer to [37, Corollary 37].

2.3.4 The structure tensor |();)

We now introduce, for every WSC () with n vertices, a corresponding
n-partite tensor |Q),) of (Q), G)-rank r which inherits the geometry of ().
This tensor facilitates a concise representation of ({2, G)-decompositions
with (Q, G)-rank r, which we will use in the proofs of Theorem 3.1.2
and Theorem 3.2.1. Defining tensor (network) decompositions via struc-
ture tensors is a common approach in tensor decompositions without
positivity constraints [29].

F; . .
For the vector space ct ' we consider the standard basis

{1B) } gerr

In other words, the basis vectors in system 7 are indexed by |B1, ..., Bk),
where k is the number of facets that contain the vertex i and f; €
{1,...,r} forevery ¢ € [k].

Given a WSC (), we define
n
Q) = Z ) @ @ |ay,) € ®Cr,-
neIlF i=1
whereZ = {1,...,r}andr; = |If'z|

For the n-cycle ©;, we obtain the n-fold MaMu-tensor (see Figure 2.10)

r

On) = D o, 2) @ g, a3) @ -+ @ |an, a7) -

0(1,...,0(n21

For the n-fold simplex X,, we obtain the unnormalized r-dimensional

GHZ-state .
[Znr) = Z |‘X>®n-
a=1
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Note that every (Q), G)-decomposition of (), G)-rank at most r can be
written as
Ty =wlle...owhlq,) (2.8)

with ‘ .
wili= 37 log) (6l

ﬁezfi

In this case, the G-invariance of |vg]> translates to

wisl sp) — Wil ).

The nonnegative (Q), G)-decomposition translates similarly, except for
the additional constraint
(G ig) >0

foreveryje {1,...,d} and every § € 77,
The psd (Q), G)-decomposition translates to

(i | T) = (O AT @@ A |O) (2.9)
]
]
also evident that |T) is a nonnegative tensor, since the matrices A
psd.

where A" are the matrices of Definition 2.3.3. From Equation (2.9) it is

[i]

. are
]

Note that in all examples, the (Q), G)-rank is determined by the minimal
parameter 7 in the structure tensor that admits such a decomposition.

2.3.5 Positive matrix tensor decompositions

We now introduce two positive tensor decompositions for multipartite
psd matrices, i.e. elements of the space

Mat;(C) ® Mat;(C) ® - - - ® Maty(C) = Maty (C),

known as separable decomposition and local purification form. These decompo-
sitions can be perceived as generalizations of the positive decompositions
for nonnegative tensors. A relation between their ranks shall be presented
in Proposition 2.3.2.

We start with the definition of the separable (Q, G)-decomposition.

Definition 2.3.4 (The separable (Q, G)-decomposition)

Let p € (Maty(C))®". The separable (€, G)-decomposition is given
by a family of matrices

(pg])ﬁelfi

for every i € [n] with pg € Mat,(C), satisfying

29
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28: For a proof of gp = p for uncon-
strained (Q), G)-decompositions, we re-

fer to the remark after Definition 2.3.1.

29: A matrix A € Mat;(C) ® Mat,(C)
is called separable if it accepts a decompo-

sition

A=>Alga?

k=1

with A][j ] = 0 psd. Separable matrices
model quantum states without entangle-

ment.

30: We refer to [
proof.

, Theorem 20] for the

1 n
b= 3 Al el
aeIf

with the additional constraints:

» Symmetry: p(ggé] = E]

> Positivity: pg 1s psd.

The minimal cardinality of Z among all separable (Q),G)-
decompositions is called the (Q), G)-rank, denoted

sep-rank q, ;) (p)-

If G = {e} is the trivial group, we call the decomposition just separable
()-decomposition and its rank just separable ()-rank, denoted

sep-rank, (p).

Note that every p attaining a separable (), G)-decomposition is inher-
ently G-invariant, i.e. go = p.28 Moreover, matrices attaining a separable
decomposition are separable by construction.?’

Examples of separable (), G)-decompositions are constructed similarly
to those of nonnegative (), G)-decompositions, with the only difference
that nonnegative local vectors are replaced by psd local matrices. We also
refer to [40, 37] for more examples.

The separable decomposition exclusively parametrizes separable matrices,
a strict subset of psd matrices. Let us introduce a positive tensor decom-
position covering all multipartite psd matrices: the (), G)-purification
form.

Definition 2.3.5 ((Q), G)-purification)
For p € Mat;(C)®", an (Q, G)-purification is a factorization

p=L'L

where L € Mat ;(C)®" for some ¢ € N together with an (Q, G)-
decomposition of L.

The most efficient (), G)-decompositions among all purifications L
defines the purification rank of p, i.e.

puri-rank ¢, ) (p) = plllLi{rlL rank(q ) (L).

Again, if G = {e} is the trivial group, we call the decomposition just ()-
purification and its corresponding rank ()-purification rank, denoted

puri-rankg (p).

If p admits a (Q), G)-purification, then it is automatically G-invariant as
well as psd, as every matrix of the form L'L is psd. Moreover, if G is a
free group action on (), then every psd G-invariant matrix admits an
(Q, G)-purification®.
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We now present the example of the unconstrained ®;,-decomposition
and ©y-purification for multipartite matrices.

Example 2.3.8 (The Matrix Product Operator form)

Let QO = @, be the cycle with 1 vertices.3! The ®,-decomposition is
given by

r
1 2
p = Z p‘[xl]rtxz ® p‘[XZ]/a:i e ® pl[’:/}l’l]rlxl

q . =1

where p, 5 € Maty(C) are arbitrary matrices (not necessarily psd). This
is known as the matrix product operator (MPO) form or matrix product
density operator (MPDO) form [126, ], also defined as

AP V) G

jl/kl/-~~/jr1/kn:1

where A][.igc € Mat,(C). The correspondence is given by

1 .
tr (Ah,kl

(ol A3 1B) = Gl o 1K)

See Figure 2.11 for a tensor network diagram.

Example 2.3.9 (The locally purified MPDO form)
Let () = ©,, be the cycle with n vertices. The ®,-purification is given by

p=L'L
together with a ®;-decomposition of L,

d
1 . )
L: Z tr (B][lz}le][:,]kn) |]1,...,]n> <k1/"‘/k71|-
jlrklr---/jn,knzl

(2.10)

The locally purified form also admits a tensor network representation
(see Figure 2.12).

This decomposition is known as the local purification form [41, 36] or
the locally purified density operator (LPDO) form.

The separable (Q), G)-decomposition and the (), G)-purification are
generalizations of the nonnegative and the psd ((, G)-decomposition,
correspondingly, in the following way: For a tensor |T) € C¢ ® - - - ® CY,

let
d

oy = S Aieeafu T it fin) Gl
Jirerjn=1

(2.11)

be the diagonal embedding of |T) into a diagonal matrix. p|7) is psd if
and only if | T) is entrywise nonnegative.

We now state the correspondence between the ranks of nonnegative
tensors and multipartite psd matrices. For a proof we refer to [37, Theorem
43].

31: See Example 2.2.3 for the definition.

‘kl ‘kz 3] ‘kn
(_A[l] 2 ARIES Al

[, [ [
I J2 n

Figure 2.11: Tensor network diagram
of the MPO. Thick lines (indexed by
&1, ...,0y) correspond to the matrix con-
tractions, the thin open lines (indexed
by j1,ki1,...,jn kn) represent the local
physical systems of dimension d.

(1] B2 <+ — Bl
N N N

Figure 2.12: The tensor network diagram
of the local purification MPDO form. The
thick horizontal lines correspond to the
matrix contraction of the tensor network
and the thin lines to the matrix contrac-
tions LY L. The thin open lines represent
the local physical systems of dimension
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Proposition 2.3.2 (Decompositions of diagonal matrices)

Let |T) be a nonnegative tensor.

» nn-rank ) (|T) = sep-rank q i) (o1m))
> psd-rank(Q,G)(|T>) = puri—rank(Q,G) (o/1))



Tensor decompositions and
correlation scenarios

In physics, we frequently encounter situations where we have access
only to a limited set of observable quantities whose behavior depends
on a hidden entity. In quantum physics, the wavefunction serves as an
example where our access is restricted. In this context, we only possess
access through measurements conducted on the quantum system, which
effectively projects the wavefunction onto a probability distribution of
measurement outcomes. (see Figure 3.1).

This begs the question: Can we deduce properties about the hidden
quantity—the wavefunction—from the outcomes of measurements?

State space

X Measurements

<

Observed correlations

Bell’s theorem [9] addresses this question in a specific setting. It demon-
strates that bipartite conditional probability distributions whose correla-
tion arises from a particular classical causal structure satisfy the so-called
Bell inequality. Consequently, a probability distribution that violates this
inequality cannot emerge from this particular causal structure.

In this chapter, we show a correspondence of similar flavor between
positive tensor decompositions and certain quantum correlation scenarios.
More specifically, we show the following:

Applying local measurements on multipartite quantum states that
obey a particular entanglement structure gives rise to probabilitiy
distributions with a bounded positive tensor rank.

Therefore, if a nonnegative tensor violates the tensor rank inequality, it
cannot arise from the specific measurement scenario. Specifically, we
show that if the subset of states S is given by states with a bounded
(Q), G)-rank, then the set Cs of arising correlations are characterized by
abounded (), G) psd rank. Furthermore, we will prove a generalized
correspondence replacing the observed correlations by density matrices
and measurements by quantum channels (see Section 3.2).

We will leverage this correspondence in Chapter 4 to prove that these
sets of correlations Cg are not topologically closed by showing this result
on the level of tensors with bounded rank.

This chapter is based on Section 4 and
Appendix E, F of [74].

3.1
3.11

312

3.2

Classical correlations . . . . 34
Classical correlations from

(Q), G)-structures
A correspondence to positive
tensorranks. . .. ....... 35

Mixed state correlation
scenarios

Figure 3.1: Applying measurements on a
given set of states S gives rise to a subset
of probability distributions Cs. Therefore,
observing a correlation outside of Cg
witnesses that the state of the system is
not contained in S.
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1: An undirected graphical model is a
probabilistic model, where a graph ex-
presses the conditional independence
structure of the probability distribution.
For details on undirected graphical mod-
els, we refer to [76].

with A € [r]

P € CCorr(n,d,r)

Figure 3.2: The classical correlation sce-
nario defined in Equation (3.2). The joint
probability distribution arises from a
joint hidden variable that is shared be-
tween n parties.

Probabilistic structures and their connection to tensor- and matrix-ranks
have been previously explored:

» The nonnegative matrix decomposition is equivalent to a bipartite
classical correlation scenario [31]. Since then, this correspondence
has appeared in many different contexts and has also been general-
ized to the nonnegative tensor decomposition with one summation
index [80, 101].

> A similar relation between the positive semidefinite matrix rank
and bipartite quantum correlation scenarios has appeared in several
works, see [49, 68, 69, 50].

» Nondeterministic quantum communication also relates to a notion
of tensor rank, called the support rank [23].

» Nonnegative tensor network decompositions share a duality to
undirected graphical models as shown in [103, 58, 57, 84].

To the best of our knowledge, there is no existing relation between the
psd-rank for tensor networks and correlation scenarios.

This chapter is organized as follows: In Section 3.1 we introduce two
correlation scenarios arising from classical hidden variables, as well as
quantum states with a particular entanglement structure. We relate the
sets of these correlation scenarios with nonnegative tensors of bounded
rank. In Section 3.2 we extend these findings to mixed state correlation
scenarios.

3.1 Classical correlations

Multipartite, finite probability distributions can be associated with non-
negative tensors. In particular, if Xy, ..., X;, are random variables taking
valuesin {1,...,d}, then the tensor | T), defined via

<j1,...,jn|T> = P(Xl :jlr---/Xn :]n) (31)

is a nonnegative tensor which is in addition normalized, i.e.

d

Y lueen T) =1

jl:nujnzl

Conversely, every normalized, nonnegative tensor gives rise to a proba-
bility distribution via Equation (3.1).

In the following, we use both notations probability distributions P and
corresponding tensors | T) interchangeably. Specifically, we define specific
correlation scenarios for probability distributions P and link them with
the positive ranks for the corresponding nonnegative tensors |T).

3.1.1 Classical correlations from (Q), G)-structures

We now define two correlation scenario sets that can be characterized
via positive ranks.



First, we define the set
CCorr(n,d,r)

as the set of probability distributions on n parties with local dimension d
arising from local distributions conditioned on a shared hidden variable
taking values in {1,...,r} (see Figure 3.2), i.e.

n

P(Xy=ji,....Xn=ju) =Y _P(A=a)[[P(Xi=ji|A=a) (32
a=1 i

i=1
where Xy, ..., X, are random variables taking values in {1, co,d }
Second, we define the set

CQCorr(q(n,4d,r)

for a given WSC () and a group action G on () as the set of all n-partite
probability distributions P arising as

PXi=j1,....Xn=1jn) = <¢|AE]®_“®A[VI] )

In
(4

are POVMs? that are G-symmetric, i.e. the measurement on position i
coincides with the measurement on gi for every ¢ € G. In other words,

where

we have that A][-gl] = A][-l] for every ¢ € G. Moreover, the state |1) satisfies
the constraint that

rank(q ) ([)) <.

We refer to Figure 3.3 for an illustration of this scenario.
If, for example, () = ©, is a cycle with n vertices, then
CQCorrg, (n,d, 1)

is the set of all n-partite probability distributions obtained from an MPS
|¢) with bond dimension at most 7 via measurements on each local space.
For the cyclic group G = Cy,

CQCorrg, c,)(1,d,7)

is the set of probability distributions obtained from a ti MPS |¢) with
bond dimension at most r via identical measurements on each local
space.

3.1.2 A correspondence to positive tensor ranks

In the following, we show that the sets
CCorr(n,d,r) and CQCorr(qc)(n,d,r)

are characterized by the positive tensor ranks introduced in Section 2.3.

3.1 Classical correlations 35

with rankq (|y)) <r

] [ -+
b )

P e CQCorrq(n,d,r)

Figure 3.3: The quantum-classical cor-
relation scenario for a trivial group ac-
tion G. The state |¢) admits an Q-
decomposition with rankg(|¢)) < r.
Each of the n measurements is performed
locally and outputs a d-dimensional ran-
dom variable.

2: A positive operator-valued measure-
ment (POVM) is defined by a family of
psd matrices E; that satisfy the normal-
ization condition

k
> E=1
j=1

This describes a measurement on a state
© with probability distribution

P(X=j)= tr(Ejp).
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For this purpose, let | T) be the corresponding tensor to the probability

distribution P as defined in Equation (3.1).

First, we show the correspondence for classical probability distributions.
Note that a similar result has also been proven in [

Theorem 3.1.1 (The nonnegative rank and classical correlations)

The following statements are equivalent:

(i) nn-ranky, (|T)) <7
(i) P € CCorr(n,d,r).

The same equivalence holds for nn-rank s, s ) with the additional
constraint in (ii) that the conditional probability distributions

P(X;=—|Z=u)

are identical for every i € {1,...,n}.

Proof. We show the equivalence only for nn-rank, s,) as the other

follows analogously.

(i) = (ii): Since rank (s, 5,y(|T)) < r there is a nonnegative decomposi-

tion .
T) :Z|0a>®"'®|vﬂc>~
a=1
Define
P(Xi = | Z=a) =
and
d
P(Z=a)= | (jlow)
j=1
By definition, P(X; = — | Z = «) is a probability distribution. Moreover,

P(Z = —) is a probability distribution since

r d "

D PZ=a)=) (> (ilva)
a=1

a=1 j:1

a= 1]1 ]n_1

Jiresjn=1

d
Y PXy=ji.., X =

j1/~-~/jn:1

where we have used the correspondence between P and |T) in the
last step. Finally, P(X; = — | Z = a) and P(Z =

probability distribution P.

(| va)
S (il oa)

Z Z (s - Jinl (Iva>)®n
S (zva )

—) give rise to the



(ii) = (i): Let
P(Xy=ji,.... X0 =Ju) = > P(Z=a)[[P(Xi=]ji| Z=n).
a=1 i=1

Defining

7

oy =S"P(X; = jIZ = a)- P(Z = )7 |j)
j:1

gives rise to nonnegative vectors in the computational basis. Since all

conditional distributions P(X; = —|Z = «) are identical, we have that
\v,[,f]> = |U,[,{]> =: |v,) for every i,j € {1,...,n}. It is immediate that
Equation (3.3) holds. O

We now prove that elements of CQCorr(q, i) (1, d, r) are precisely these
tensors with psd-rank, ¢;) (|T)) < rif G is a external group action on

Q.3 The special case Q) = ¥, and G = {e} is proven in [69, Theorem
13].

Theorem 3.1.2

Let () be a WSC and G an external group action on ). The following
statements are equivalent:

(i) P € CQCorr(c)(n,d,r).
(i1) psd—rank(Q,G)ﬂT)) <r

We first need a preparatory lemma about the joint diagonalizability of
G-invariant families of matrices.

Lemma 3.1.3 (G-symmetric matrix diagonalization)

Let () be a wsc and G an external group action on (). Moreover, let
Kl e Her_7 (C) for i € [n] be Hermitian matrices such that

(5Bl KT [5p) = (B KU |B')  forall p,p' € 7
Then, there exists a joint eigendecomposition of all matrices K/
1 Al gl (gl
K[z] _ Z)\[Z ’wgl > <w€1 |
/=1

such that

(B w") = (Bl w,)) and AF! = 2]

Proof. Choose iy,...,im € [n] representatives of the m orbits of the
group action G on [n]. Computing the eigenvectors and eigenvalues of
KM, ..., Klinl we obtain a generating set of eigendecompositions for
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3: See Definition 2.2.5 for external group
actions.
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every matrix K by setting
A=A and ) = 3T 15 (Blw))
ﬁezﬁk

for ¢ € G and a representative iy such that i = giy. Since the action
is external, this is independent of the choice of g, which shows the
statement. O

We are now ready to prove the main statement of this section.

Proof of Theorem 3.1.2. (i) = (ii): Let P € CQCorr(q ¢)(n,d, ). By defi-
nition, there exists a state

)= > o) @loll)

oceIf

N
with |Z| < r and G-invariant POVMs (A][.l]) - such that
j=

(urin | T =t (A @@ A |) (9]) -
Define

i N\ 4l i ~ i i
Bl = (XI) Al witn xH = S polf) (5l
pez’i

Note that B ][i] € Psd 77 (C). Moreover, we have
81 B [58) = (0| A [0l)) = (0| AV (o) = (B| B}" |B')

where we have used that |vg]> forms a (Q), G)-decomposition and that

A][.l] are G-invariant. Moreover,

=(plAl e A |y) =P,

which proves that psd-rank ¢, ;) (P) < 7.
(ii) = (i): Let

Guoweoinl T = 32 (8)), o (B2,

a,n' €TF h

(3.4)
= (/B e @B o)

be a psd (Q), G)-decomposition of P with psd-rank (P) <r=|Z|.
[
]
a POVM and |Q),) to construct a state whose combination leads to P.

As the last expression in Equation (3.4) suggests, we use B 1 to construct



While the matrices B][i] are psd, they need not form a POVM since

k .
Z B][I] 7& ]l’i
j=1
withr; = |Iff |. To this end, define

S[z. ZB ZA[I 1>< ]|

=1

with /\Lﬂ > 0 being only the positive eigenvalues of Sl and \w?) being
the G-invariant eigenvectors of the family S[',..., S according to
Lemma 3.1.3. Define

i (Y2 i) X ()12 0
T :Z<A€> Wy (¢ and W :Z(Ag) 1) (wl].
(=1 (=1

Note that Tl - Wl is a projector on

span({[w})) ..., [wh,)})-
Therefore, we have that
i _ (] wlil\ Rl i wli
Bj _(TH.W[]) 'Bj -(TH~WH). (3.5)
Moreover, we have that
BT = (BT and Wil 5y =Wl |p) @6

i\d

since the vectors |wg]> are G-invariant. We now define a POVM (A}") -1

via
[i] N\ T [l] .

We have that A][-i] is psd and

[
j

d .
Z A]['l] = L,
=1

which shows that Al := (AH> y is indeed a POVM for each i € [n].

=1,

3.1 Classical correlations
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A\ 1
Moreover, (A[l]) - is a G-invariant family since
1=

Alsi] _ (T[gi])* . B][sil Tlgi

]
SR CERRCEA

BB eT’i
= Y (BT 5l BT o) (s T
BB T’
= % (i) (g8 ) (BT = AT
BB ez’

where we have used that  — 3§ is a bijection between 7% and 77¢ in
the third step, and Equation (3.6) in the fourth step. Moreover,

) == wllg...owl Q)

is a state with rank ) (|§)) < r since

Wle) = (O] (Wm)*wm 9. ® (w["}fw["} 0,)
:<Q|5[1] @ SM )
-, ),

wrfn=1 g qeTF “h "l
d
= > (il T) =1
Jirerjn=1

where we have used that the tensor |T) represents a probability distribu-
N
tion in the last step. Finally, the defined POVMs (A][»Z]> - and the state
]:
|l/J> generate the probability distribution P, since

[1] [n] _ [1]
<1/J‘ A]‘l ®A]n |¢> - Z ( 1 >a| o

= 1
w0’ eTF h

= (el T)

(B,

In

where we have used Equation (3.5) in the first step and Equation (3.4) in
the second step. O

3.2 Mixed state correlation scenarios

In the following, we consider correlation scenarios where the output is a
density matrix instead of a probability distribution. We will generalize
the set CQCorr(q )(n,d, 7) to this setting and show that the puri-rank
of the output density matrix characterizes these correlations.

We define the set QQCorr( ) (n,d,r) as the set of all density matrices
arising as

p=(E1®- &) () (¥])
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where (&), is a family of quantum channels* which is G-invariant,
ie.

£ = Eqi.

Moreover, [i) satisfies the condition rank(q ¢)([|§)) < r. We refer to
Figure 3.4 for a sketch.

So, for example, when () = ©, is a cycle graph of length 7, then
QQCorrg, (n,d,r) is the set of all n-partite density matrices obtained
from a MPS |¢) with rankg, (|¢)) < r and applying local quantum
channels on each local space. If additionally G = C; is the cyclic group,
then QQCorr(g, c,) (1, d,7) is the set of density matrices obtained from
a MPS [¢) with rankg, c,)(|#)) < r and applying identical quantum
channels on each local space.

We now prove the quantum version of Theorem 3.1.2, namely that
elements of QQCorr(q ¢ (1, d, r) are precisely psd matrices p with tr(p) =
1 and puri-rank g, (p) <.

Theorem 3.2.1 (The puri-rank and quantum scenarios)

Let ) be a WSC, G an external group action, and p an n-partite
density matrix. The following statements are equivalent:

(i) p € QQCorrq ) (n,d, 7).
(i) puri-rank, ) (p) <7

The proof of this statement is similar to that of Theorem 3.1.2. The
proof idea of (ii) = (i) is depicted in Figure 3.5 for one-dimensional
purification forms, i.e. a Ay-purification.

Proof. (i) = (ii): Let p be a density matrix in QQCorr(q, c)(n,d, 7). By
definition, there exists a state

)= > k)@ @loll)

acl”

such that rank( ¢)(¢)) < r = |Z| and G-invariant family of quantum
channels

f-)= 3 (aF) . — - (all)’ 67)

with the condition that A,[:] = A,[(gi]. We now define L € Maty 4, (C) ®
-+ ® Maty 4, (C) such that

(@ p=LL*
(b) rank(qc)(L) <7

which proves (ii). For i € [n] and B € T7i let
dj

Ly = ; A [og) (k] (3.8)

4: A quantum channel describes the
most general transformation of a quan-
tum state. It is a map

& : Maty, (C) — Maty, (C)
that is completely positive, i.e.
(1, ® &) (p) is psd

for every n € IN and every psd matrix p,
and trace preserving, i.e.

(£(0)) = tr(p).

A quantum channel is thus called com-
pletely positive trace preserving (cptp)
map.
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Further, set 0 .
1 n
L = Z~La|1 ® o ®La\n'

acZF

By definition, we have that rank(q (L) < r. It remains to prove (a). But
this follows from

d t
= 3 (ale-ea) iy @l (ad @4l
-

=& @ @&)(ly) W) =p

where we have used Equation (3.8) in the first step and Equation (3.7) in
the second.

(ii) = (i): Let p = LL" where
— (1] [n]
L= Z~L“\1 ®-- '®sz|”
w€I”
be an (Q), G)-purificiation with puri-rank ) ¢ (o) <r=|T|
Defining the completely positive maps

d/

we have that

p=M®e- - @N)(Q) (O]) (3.9)

where |(),) is the structure tensor defined in Subsection 2.3.4. However,
N is neither trace-preserving nor a G-invariant family, and |Q),) is not
normalized. For this reason, define

U

m;
] ' (I = Sl gl
sth= 3" () - (B) = > o)) (wf!|
k=1 (=1
where |w¥] ) is a G-invariant eigendecomposition of the family S, . . ., 5"
according to Lemma 3.1.3. Similarly to the proof of Theorem 3.1.2 we
define

N —1/2

Tl .— Z (AE]) |w[l]> (|

~ (3.10)
Lo 1/2 :

wil =37 (A7) 10 @l

(=1
and completely positive maps
' . Nt . . .
&)= (A7) -p-(A)) with all:= B T 1)

k=1

Note that (£;);j—1 ., is by definition a G-invariant family of quantum
channels. Moreover, by the reasoning of the proof of Theorem 3.1.2,

) =wille...ewhlq,) (3.12)
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(b) (d)
1) -
|
IAWI IAmI Irﬂl
IAMI AMI [ 4B |
[
(a) (e)

defines a normalized state with rankq ) (|)) < r. Moreover,

(Gr@---@&) (1) (P) = M- @Nu) (1O) () = p

which proves the statement. O

Note that Theorem 3.2.1 implies Theorem 3.1.2 when restricting to
diagonal density matrices. This follows from the fact that every quantum
channel that outputs only classical states corresponds to a POVM.

More specifically, every POVM Ey, .. .,
nel

Ey gives rise to a quantum chan-

E: Matd(C) — Mat(C)

p—>Z\ (i| tr(E

Conversely, every quantum channel that maps into the space of diagonal
matrices can be specified by

E: Matd(C) — Mat(C)
PHZ| (i tr(Aip)

since |i) (i| for i € [k] is a basis of the space of diagonal matrices in
Maty (C). Since € is positive, we have that tr(A;) > 0 for all psd matrices
p. This implies that A; is psd. Moreover, since £ is trace preserving,

k
r(}:Am>=ﬂdm
i=1

Figure 3.5: Proof of Theorem 3.2.1 (ii)
= (i) on a 1d chain, ie. proving
the equality of expressions (a) and (e).
(a) is the local purification form with
puri-rank, () < 7. (b) When rearrang-
ing the wires, we obtain the definition of
a ()-decomposition with the structure-
tensor |(),) according to Equation (2.8).
This decomposition can also be under-
stood as applying a completely positive
map to |()) according to Equation (3.9).
In (c), we insert a projector Pl of the
space where the tensor L[l acts non-
trivially and factorize it into a product
Tl . Wi according to Equation (3.10). To
obtain (d) we merge the upper box (TW)
with the red box (Equation (3.11)). This
gives rise to a normalized state (Equa-
tion (3.12)) together with local quantum
channels (e).
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5: Given A € Hery(C), the condition
tr(AB) = tr(B) for every B € Her,(C)
implies that A = 1. This follows since

tr((A—1)B) =0

for every B. Since tr is an inner product
on Hery(C), we can conclude that A —
1=0.

for every p. But this shows that’

and hence (A;)i—1,  isa POVM.

To summarize, Theorem 3.1.2 and Theorem 3.2.1 reveal that bounding
psd-rank and puri-rank leads to an information-theoretic interpretation,
elucidating correlations arising from quantum states with particular
entanglement structures. We will revisit these correlation scenarios in
Section 4.3, demonstrating that the sets of correlation scenarios do not
exhibit topological closure for certain configurations of (2 and G.



Border ranks of positive tensor
decompositions

It is well-known that low-rank approximations of matrices exhibit desir-
able properties: For every matrix, there is a best low-rank approximation
with a fixed error, and any element closer to the original matrix must
have a larger rank. In other words, the approximate rank

rank®(|T)) : rank(|W))

m‘in 4.1)

W) =IT) I<e
coincides with the exact rank when ¢ is small enough.

The multipartite tensor rank behaves very differently: There exist tensors
|T) where the border rank

rank(T)) = lim rank’(|T))

is strictly smaller than the rank of |T) (see Figure 4.1). For the mathe-
matician, this means that the rank is not lower semi-continuous. This is
equivalent to the statement that the set of tensors whose rank is upper
bounded by a constant r

T == {|T) € V" : rank(|T)) < r}

is topologically not closed since there are sequences in 7 whose limit
is not in 7. As a consequence, optimization problems over such sets,
such as computing an optimal low-rank approximation, are generally
ill-posed [114]. It is known that tensor decompositions with three or more
local spaces exhibit a gap between rank and border rank [78], and so
do tensor network decompositions containing loops [77, 29, 5], where
some of these results concern symmetric decompositions of invariant
tensors.

yen

t-rank(|T;))
€

In this chapter, we prove that several locally positive and invariant decom-
positions exhibit a gap between rank and border rank, as summarized in
Figure 4.2. This includes positive and /or symmetric versions of Matrix
Product States (MPS) and Matrix Product Operators (MPO), as well as
the multipartite generalizations of the psd-rank.

We leverage the gaps between border ranks and ranks together with
the connection to quantum correlations presented in Chapter 3 to show
that:

This chapter is based on Section 1, 3, 4,

and 5 of [74].
41  Gaps between ranks and
borderranks ......... 46
411 Standard tensor decomposi-
tion................ 47
4.1.2 Cyclic translational invariant
decomposition . .. ...... 50
413 Cyclic decompositions . . .. 52
4.1.4 Multipartite positive semidef-
inite matrices . . . . ... ... 53
42 Absenceofgaps ....... 54
421 Standard tensor decomposi-
tion................ 54
4.2.2 Tree tensor networks . . ... 56
43 Applications . ........ 62
4.31 Instability in optimization . . 63
4.3.2 Quantum correlation scenar-
10s. .. ... 64
4.3.3 Separations for approximate
tensor decompositions . . . . 65
44  Conclusions and outlook . 66

Figure 4.1: Border rank. Given a tensor
|T) in an n-fold tensor product space
and a certain type of rank t-rank, if
there exists a family of tensors (|T))e>0
such that |T;) — |T) for ¢ — 0 and
t-rank(|T;)) < t-rank(|T)) foralle > 0,
we say that t-rank exhibits a gap between
rank and border rank.
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Imposing stronger

DecomposiTioN | Standard | Symmetric Cyclic . Tran.sl. Tree
invariant
TYPE
| W@ OO
OF RANK
Yes (n > 3) Yes (n > 3) Yes (1 > 3) Yes (n > 3) No
rank
[13,78] [78] [5,29,77] [5,29] [5,77]
£
g
g psd-rank | Yes (>5) Yes (n > 3) ) Yes (1 > 17) No
.g puri-rank | (Sec. 411) (Sec. 4.1.1) ) (Sec. 41.2) (Thm. 4.2.6)
%
nn-rank No No Yes (n > 3) Yes (n > 5) No
sep-rank (Thm. 4.2.2) (Thm. 4.2.2) (Sec. 41.3) (Sec. 41.2) (Thm. 4.2.6)

Figure 4.2: Is there a gap between rank and border rank in an n-fold tensor product space? This table summarizes known
results and the contributions of this paper (marked boldface): We prove that gaps persist when imposing positivity constrains
corresponding to quantum correlation scenarios (second row), and that certain gaps disappear for stronger positivity constrains
corresponding to classical correlation scenarios (third row). The types of ranks and of decompositions are defined in Chapter 2.

| 2

4.1

Here

If a tensor network geometry (i.e. the WSC) contains a loop, comput-
ing the best approximation with a fixed positive rank is ill-posed.
Specifically, given a mixed state p, there is typically no mixed state
o which is the best approximation among all decompositions with
a positive rank bounded by r, because for any ¢ > 0 there is an
e-close mixed state of rank r, while the rank of p is strictly greater
than .

The set of probability distributions generated by a multipartite state
with local measurements (Figure 3.3) is not closed. Consequently,
it is impossible to verify the necessity of a certain resource state
from sampling the distribution, even in arbitrarily many rounds.
The same applies to generating multipartite mixed states from local
quantum channels (Figure 3.4).

We provide correlation scenarios where the quantum case is fragile
with respect to approximations, while the classical case is robust.
This shows a novel type of separation between these two scenarios.

Gaps between ranks and border ranks

we provide examples of tensor decompositions with gaps sum-

marized in Figure 4.2. Throughout, the gaps between ranks and border
ranks are established by giving explicit examples of tensors exhibiting

them.

Note

that for every (Q), G)-rank, we define the corresponding border

(Q), G)-rank as the minimal (), G)-rank of a sequence approach to the
original element. More precisely

rank ) (|T)) <7 <

EI(|Tn>)ne]N :
and

Ta) = |T)
rank(q ) (|Tw)) < 7.
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Wedefine psd-rank q g), nn-rank q ), puri-rank q ), and sep-rank q )
analogously.

4.1.1 Standard tensor decomposition

Since the matrix rank does not exhibit a gap between border rank and
rank, systems of size n = 3 are the smallest examples with a gap between
border rank and rank. While this has been extensively studied for the
standard and symmetric tensor rank!, we extend these investigations in
this subsection to psd matrices. The nonnegative standard decomposition
is treated in Section 4.2.1.

For the standard (unconstrained) tensor decomposition, the unnormal-
ized n-partite W-state

IW,) :==10,...,0,1) +0,...,1,0) +...4+1,0,...,0)

exhibits a gap between border rank and rank as well as between symmetric
border rank and rank for system sizes n > 3. Specifically, for ¢ > 0, the
family of tensors

1 : 1
\w;):E(\o>+s\1>)®”—g|o,...,o> (4.2)
implies that
rank(y, sy (|Wy)) = ranks, (|Wy)) =2 (4.3)

since |W5) — |W,,) as e — 0. On the other hand, we obtain the following
statement:

Proposition 4.1.1
For n > 2, we have that ranky, (|W,)) = n.

Proof. That ranky, (|Wy)) < n is clear by the definition of |W,). We
prove that ranky, (|W;,)) > n by induction. The case n = 2 is clear, since
|W>) € C? ® C? corresponds to the matrix

W = [0) (1] + 1) (0] = ((1) (1))

Therefore |W,) has Zp-rank? 2.

For the induction step n — n + 1, suppose that |W,, 1) has
rankzn+1(|Wn+1>) <n

with a decomposition

n

Wirt) =Y oy @ @ o).

a=1
For the first local system, we will prove that

(a) The vectors {|Ut[x”>},x:1/“_/n span C2.

1: See for example [78] and references
therein.

2: This is precisely the matrix rank.
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(b) |UE]> = cp|0) forevery B € {1,...,n}.

These two conditions contradict each other, hence proving the statement
of the proposition.

To prove (a) assume that the family { |U£¢1]>}a:1”_'m does not span C?.

Then there exists a non-zero vector |x) € C? such that (x | v,[,}]> =0 for
every a. Appyling (x| to the first tensor factor of [W,, ;1) leads to

0= (x|0) [Wy) + (x]1)1]0,0,0,...,0).

Since |W,) and |0,...,0) are linearly independent this implies that
|x) = 0, which is a contradiction.

To prove (b), note that
ranks,, (W) +b10,...,0)) > rankg, (|W,)) > n
for every b € R since
[W,,) = A®n(|wn> +b|0,0,0,...,0>)
with )
Az|0) = 0), (1) 1)~ ]0).
This shows that

ranky, (|Wn> +0]0,.. .,0)) > ranky, (|Wy))

since the rank is non-increasing under local operations. Now let 8 €
{1,...,7} be fixed and choose |x) € C? such that (x | vg]> = 0. Applying
(x| to the first tensor factor of |W,, 1) we obtain

n
S (xlod) o) @ @ o)) = (x]0) Wy + (x[1)[0,0,0,....,0).
=1
a7p
Since the sum on the left hand side contains 7 — 1 elementary tensors

and the right hand side has rank at least n, if (x| 0) # 0, it follows that
(x]0) = 0. But this implies that

o) = ¢ 0).

Equation (4.3) and Proposition 4.1.1 imply the following corollary:

Corollary 4.1.2

For n > 3, the standard and the symmetric tensor rank exhibit a gap.
More specifically

rank(y, s,)(|Wa)) = ranky (|Wy)) =2
< n = rankyg, (|[Wy)) < rankz, s,)(|Wn))
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We now show that the |W,,) also exhibits a gap between rank and border
rank for the psd X,-rank. Since ranky, (|W,)) = n and

ranky, (|T)) < psd-rankg (|T) )2

(see Lemma 2.3.1) we have psd-ranky, (Ws) > 3and psd-ranky (Wy) =

Q(+/n).3 It is not known if this lower bound is tight. 3: This means that psd-ranky, is asymp-

~ totically lower bounded by D - /n for
On the other hand, for € > 0, the family of tensors |W};) defined by psd  some constant D.

matrices
C 1 e 11
e __ . [—
Ay = 7}17\% < T ), Al s( 11 ) (4.4)

for a suitable constant C € R provide an arbitrarily close approximation
of |W,) which implies that
psd-ranky, (|Wy)) = psd-ranks, s,)([Wn)) = 2.

In other words, there is a border rank separation for n-partite psd-
decompositions with n > 5.

For the symmetric psd rank of |W3) we obtain a tighter lower bound.

Proposition 4.1.3

We have that
3 < psd-rank(y, g ) (W3).

Proof. Assume that psd-ranky ¢ ) (W3) = 2. Then there exists a sym-
metric psd-decomposition

2

(1, J2,J31 W3) = Z (Ah),x,ﬁ ’ (A]'z)a,la ' (Ajs)a,/g'
a,B=1

This can be expressed equivalently as
<j1/j2/j3 | W3> = <M‘ Aj1 *Ajz *A]é |M>

where |[M) = (1,...,1)! and * is the Hadamard product.* We claim that ~ 4: The Hadamard Product x of two ma-
Ap and A; in the decomposition have rank 1. Assume for example that ~trices is defined as

Ap has full rank; it is positive definite, therefore Ag x Ag x Ay is positive (X*Y)yp = Xap - Yop-
definite by Schur’s product theorem (see [65, Theorem 7.5.3.]). But this

implies that

0= <0,0,0|W3> = <M|A0*A0*A0|M> > 0.

The same argument applies to Aj.

Since Ag, A1 have rank 1, we can parametrize them as

A= ajpo V081 exp(i27fgo]»)
/ A /a]-,oajrl exp(—i27rq)j) LZ]',1
where a;p,a;1 > 0. Since (0,0,0|W3) = (1,1,1|W3) = 0, we have
that a;o = a;y for j = 0,1 as well as ¢; = 1/2 which implies that
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5: A weaker lower bound

rankg, c,) (|[Wa)) > Q(n'?)

was shown by Pérez-Garcia et al. [97]

1

using Wieland’s inequality [

<j1,j2,j3|W3> :Oforalljl,jz,jg S {0,1}. O

For the non-symmetric case in the tripartite scenario the existence of a
gap between border rank and rank is still open. We summarize these
observations in the following corollary:

Corollary 4.1.4

Forn > 5, there is a gap between psd-ranky and psd-ranky, . More
specifically

psd-ranky (|Wy)) = psd-rank(s, s.\(|Wx)) =2

and

Vn < psd-ranky (|W3)).

For the symmetric psd rank, the gap is already present for n = 3,

since
psd-ranky (|Wy)) = 3.

In contrast to the psd-decomposition, the nonnegative (and subsequently
also the separable) decomposition exhibit no gap between border rank
and rank in the n-partite case for arbitrary n, as we will see Section 4.2.

4.1.2 Cyclic translational invariant decomposition

We now prove the existence of gaps between border rank and rank for ti
cyclic decompositions. We obtain border rank separations for all types of
decompositions. Similar to Section 4.1.1 the n-partite W-state is can be
used as an example showing the gaps.

We start with the unconstrained decomposition.

Proposition 4.1.5
For the n-partite W-state we have that

rank e, c,) (W) =2 < vn < rankg, ¢, (|Wa))

Therefore, there is a gap for n > 5.

Proof. For rankg, c,)(|[Wx)) = 2, we use the construction by Christandl
et al. [29]. We define the approximate decomposition using |vj,) =
|v5,) = 0and

1 (1 1 ((-1)
) = ;) and |U§2>:€1/n< .

for arbitrary & > 0.

For the lower bound /1 < rank (g, c,)(|Wn)) we refer to [40, Proposition
23] which relies on the irreducible form of MPS [35].5 O

For the ti psd-decomposition, we obtain the following result:
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Proposition 4.1.6
We have that
psd-rank(e, c,) ([Wn)) =

and
Q(n'/*) < psd-rank (©n,Cn) (|Whr))

In particular, there is a gap for n > 17.

Proof. To show psd-rank g, c,)(|Wn)) = 2, we define the psd matrices

(B; > waliBp Oua Opp (AJS ) ap

where A; is defined in Equation (4.4). We obtain

2

Z (Bil)al,az;ﬁlrﬁz o (BJS )txn,ﬂtl/ﬁnrﬁl

a;,Bi=1

= (i jn | W) + O (157

Moreover, using Lemma 2.3.1 together with Proposition 4.1.5 we obtain
that

psd-rankg ) (|[Wi)) 2 ( 1/4) (4.5)

and in particular psd-rank g c ) (|[Wy)) = 3 as soon as n > 17. This
proves the separation between border rank and rank for the t.i. cyclic
psd-decomposition. O

For the ti nonnegative decomposition we construct a tensor with a
separation between border rank and rank for every odd n > 5. Consider
again the tensor |Wj,). By the previous discussion, we have

nn-rankg, c,)(|Wn)) > ranke, c,) ([Wa)) > V.

In order to prove an upper bound for nn-rank g, ¢, ), we use the following
representation of a nonnegative cyclic decomposition

(1,--,jn|T) = ’cr(A]-1 . "A]'n)/

where A; € M,(C) and (Aj)sp = 0. It follows that the rank of the
decomposition is specified by the size of the matrices A]-.6

Proposition 4.1.7

We have that
nn-rank g, c,) (|Wn)) <2

if n is odd.

Proof. Let

6: For details, we refer to Example 2.3.6.



52

4 Border ranks of positive tensor decompositions

be multiples of a nonnegative representation of the cyclic group on {1,2},
where T is the permutation 1 — 2 and 2 — 1 and P; the corresponding
permutation matrix. We have

(o | W) o= 5t (A5 A5

0 tj1+ ...+ ju even

Nl—= N

k1t tj1+...+jnodd
where k := j; + - - - + ji,. This implies that [W¢) = } [W,,) + O(¢2). O

Note that this construction generalizes to every n and p | (n — 1) by
replacing {1,2} with {1,..., p}, and T by the translationon {1, ..., p}.
Since the corresponding permutation matrices Afj and Af are of size
p x p, it follows that nn-rank g, c,)(|Wx)) < p.

Corollary 4.1.8
If n is odd, we have that

nn-rank g, c,) (|Wn)) = 2 < Vi < rankg, ¢,y (|Wa))
< nn-rankg, ) (|Wn))-

This implies that there is a gap for n > 5.

4.1.3 Cyclic decompositions

In the following, we consider the cyclic decomposition without transla-
tional invariance. In contrast to Section 4.1.2, the n-partite W-state is not
an appropriate example to show a gap. This is because

rankg, (|W)) = ranke, (|[Wx)) = 2

since )
[Wa) = Z |Ua1r062> ® ‘wﬂé2ﬂ3> & ® ‘wan,a1>
0p e =1
where
|0a,) = 04,2081 10) + 0u,20p2 |1)
and

|Wa,) = Oa,p10) + 0n,10p2 [1) -

Regarding unconstrained decompositions, Barthel et al. [5] prove that
for the ®,-rank, there is a gap between border rank and rank for the
two-domain state, given by

k
1) = |a,a)*"
a=1
n-1 k

3N ) @2 |pw).
i=0 a#p=1
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In particular, they prove that rankg, (|7)) < k < ranke, (|7)).

The construction in [5] also leads to a gap between border rank and rank
for nonnegative cyclic decompositions, which we briefly review now. Let
e > 0 and define for every a, § € {1,...,k} the nonnegative vectors

045 = €la, B) + (1 = €)0up |a, B)

where J, g is the Kronecker-delta, as well as

c 1
|Wep) = Sap |t )+ (1= 0up) [0, B)

Setting

k
1T = D (05 0) ® [0h) @+ @105, ) © W0

lX,':l

we obtain |T;) = |7) 4+ O(e) and therefore nn-rankg (|7)) < k. This
implies the following chain of inequalities

rankg (|7)) < nn-rankg (|7)) <k < rankg, (|7)) < nn-rankg, (|7)),

where the strict inequality is shown in [5, Proposition 5] and the in-
equalities between rankg, and nn-rankg, hold because the latter is a
constrained version of the former.

Lemma 2.3.1 cannot be employed to prove a gap for the psd-rankg, . The
existence of an example for the ti cyclic psd decomposition, motivates us
to conjecture that:

Conjecture 4.1.9

There is a nonnegative tensor |T) such that

psd-rankg, (|T)) < psd-rankg (|T)).

4.1.4 Multipartite positive semidefinite matrices

The three types of positive decompositions for nonnegative tensors are
related to the three positive decompositions for multipartite psd matrices
(see Proposition 2.3.2). This enables us to translate gaps between border
ranks and ranks for positive tensor decompositions to gaps between
border rank and rank for multipartite psd matrices. Given a tensor |T)
such that psd-ranky, (|T)) < psd-ranky, (|T)), the diagonal matrix p|r)
(Equation (2.11)) satisfies

puri-ranky, (o|7)) < psd-ranky, (|T))
< psd-ranky, (|T))

= puri-ranky (p|7)),

and thereby exhibits a gap between border rank and rank for puri-ranky, .

Analogously one obtains gaps for matrix tensor decompositions whenever

53
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7: This is for example the case for all
examples exhibiting a gap. There, the
local vectors diverge when approaching
the limit.

8: This means that every local element
satisfies a normalization constraint

A set S in a finite dimensional normed
vector space is compact if it is

» closed, i.e. every converging se-
quence (s;)neN with sequence
elements s, € S has its limit in
S, and

» bounded, i.e. thereis a C € R
such that ||s|| < Cforalls € S.

9: More specifically, if || — ||1, || — ||2 are
two norms on V, there exist constants
¢1,c2 > 0such that

cllolls < [[vllz < e2f[olfs-

for every v € V.

there is a gap in the corresponding tensor decomposition. This strat-
egy results in gaps between border rank and rank for puri-rank(zn 5u)7
puri-rank g c ), sep-rankg ,and sep-rank g c -

4.2 Absence of gaps

In the following, we provide the two remaining cases where no gaps
between border rank and rank appear. First, we establish that for standard
tensor decompositions (i.e. only containing one summation index), the
nn-ranky, , nn-rank(y, s ), sep-ranky , and the sep-ranky g ) do not
exhibit a gap. Second, we prove that ()-decompositions arising from a
tree () do not exhibit gaps between rank and border rank regardless of
the local positivity constraints.

The proof strategy is similar in all cases. When considering a sequence of
tensors | Ty) converging to a tensor |T) and their decompositions

r
Ti) =D [0ap) @+ @ |vg1),
a=1

the local vectors |v, x) do usually not converge when k — co;” however,
we show that in the specific cases below, every decomposition can be
reduced to a normalized version®. Then we apply the Bolzano-Weierstraf3
Theorem to the local elements to guarantee that every sequence of
decompositions obtained from a converging sequence of global elements
converges to a decomposition of the same rank.

Let us now state the version of the Bolzano-Weierstrafs Theorem for finite
dimensional normed vector spaces.

Theorem 4.2.1 (Bolzano—Weierstrafs)
Let S C V be a compact set in a finite dimensional normed vector
space. Then every sequence (s;);en € SN has a convergent subse-
quence, i.e. there is a strictly increasing sequence (k;) e in IN such
that

lim s;, =s € S.

{—o0

Note that the choice of the vector space norm in Theorem 4.2.1 does
not matter, as all norms that define a finite dimensional vector space
are equivalent’. For this reason, we will equip the multipartite tensor
product space with the most convenient norm to prove the statements.

4.2.1 Standard tensor decomposition

Let us now show that nn-ranky, , nn—rank(znlsﬂ), sep—rankzn, and the
sep-rank(zn 5,) do not exhibit a gap between rank and border rank.

Theorem 4.2.2

Let (px ke be a sequence of n-partite separable matrices with limit
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px — p and sep-ranky, (ox) < r for every k. Then,
sep-ranky, (0) <7

The same statement holds for sep-rank s,)- 1t also holds for
sequences of nonnegative tensors together with nn-ranky, , and
nn-rank(y, s, ).

Since the nonnegative decomposition corresponds to the separable de-
composition of a diagonal matrix, it suffices to prove the statement for
separable decompositions. This generalizes the result in [102], by which
the multipartite nonnegative standard tensor decomposition does not
exhibit a gap between rank and border rank.

To prove Theorem 4.2.2 we need the following preparatory lemma.

Lemma 4.2.3
Let A, B € Psd;(C). Then,

max {Amax(A), Amax(B)} € Amax(A + B)

Proof. Let
(x| X[x)

(x| x)
for |x) € C¥. We have that R 4(x) + Rp(x) = R, p(x) and since A, B
are psd, we have that R 4 (x), Rp(x) > 0 for every x. This implies that

Rx(x) =

max {R(x), Rp(x)} < Ratp(x).

Since

the result follows. O

Proof of Theorem 4.2.2. We prove it for sep-ranky g . The proof for
sep-ranky isanalogous, and the proof for nn-ranky, and nn-ranky, s,

follows from restricting to diagonal matrices and the fact that!’ 10: we refer to Proposition 2.3.2 for this
correspondence.

nn-ranky, (|T)) = sep-ranky, (o|7))-

Let (px)kenN be a sequence of separable matrices with

sep-rank(y ¢ (ox) <1,

i.e. with a separable decomposition

r
=3 pas® - Dt
a=1

with p, i psd. Since all elementary tensors are themselves psd, we have
that for all « and all k

lowklle = llogklleo < llokllo < llplleo +C
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11: i.e. it corresponds to a graph with
|F| = 2 for every facet F € F and con-
tains no loops of facets, i.e. there is no
choice of distinct vertices iy, ..., iy € [n]
such that

{ivia}, ..., {ix—1, ik} {ix, i1} € F.

for some constant C € IN, where the first equality is true since

Amax <P®n ) = Amax (P)n/

the first inequality follows by Lemma 4.2.3, and the last inequality follows
from the convergence of py to p.

This implies that (o, x )k is abounded sequence. By Bolzano-Weierstrafl
(Theorem 4.2.1) there is a subsequence (k;) e such that p, , converges
to a limiting point p,, which is again psd. Since p; — p by assumption,
we have that

r
p:Zp“®®p“’
a=1

ie. sep—rank(zmsn) (p) < r, which proves the statement. O

4.2.2 Tree tensor networks

Tensor networks without local positivity exhibit border rank phenomena
if and only if they contain loops in the hypergraph () that specifies the
decomposition structure [5]. In particular, if a hypergraph () is a tree, the
corresponding unconstrained tensor network decomposition exhibits no
gap between rank and border rank. In the following we will prove that the
same is the case for positive tensor networks. We show the following;:

If Q) is a tree'l, then all positive Q-ranks do not exhibit a gap between
border rank and rank.

The proof idea is similar to the proof of Theorem 4.2.2. So we first show
that every tensor decomposition can be transformed to a normalized
version without increasing the rank. Second, we show that applying the
limit with respect to the elementary tensors yields a tensor decomposition
of the limit element.

The unconstrained decomposition

In this part, we review the result that unconstrained (2-decompositions
on trees () do not exhibit a gap between border-rank and rank, i.e.

rankq (|T)) = rankq(|T)).

The idea is as follows. A tensor decomposition where an index only joins
two local spaces, such as

IT) = 0a) ® [wa)
a=1

is equivalent to a matrix factorization of the corresponding matrix
T = A - Bwith A € Mat,;,(C) and B € Mat, 4(C), where each column
of A is given by a vector |v,) and each row of B is given by a vector |wy).
Note that there is a “gauge freedom” in these decompositions, as for
every X € Mat,,(C) invertible, A=A -X'andB = X-B give rise
to a new decomposition of T of the same rank. Computing a thin (or
reduced) QR-decomposition of A [59, Chapter 5], we obtain A = Q - R
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with Q an isometry in Mat, ,(C) and R € Mat,(C) an invertible matrix.
Hence, B _
A=Q and B:=R-B

give rise to a decomposition where all tensor factors in the first part
form an orthonormal basis, and the local vectors satisfy normalization
conditions with respect to the Hilbert-Schmidt norm

IX]l = e (X7X) =
namely ||A||, = /7 and

Il = 148z = | (10! QB) = |/ (B'B) = Bl

Similarly, for any tree () there exists a normalized ()-decomposition.
Such decompositions are known as canonical forms in the tensor network
literature!?

d
Z |1 X i1,

ij=1

12: We refer to [97] for the left- and right-
canonical form on the line, and to [110]
Lemma 4.2.4 for the canonical form on trees. See also
[89] for a detailed treatment.

®
Let Q) be a tree and |¢p) € (Cd) " with rankq (|p)) < r. There

. 13: see Section 2.3.4 for the relation be-

tween the structure tensor |(),) and Q-

|l/J> — wil R wl (o) decompositions.

exists a decomposition

such that

Wi, =7 fori=1,...,n—1,and W= /(w]|p)

Proof. Follows directly from the proof in [5, Proposition 1]. O

Lemma 4.2.4 entails that there is no gap between border rank and rank
for unconstrained ()-decompositions whenever (1 is a tree.

Theorem 4.2.5
If Q) is a tree, then rank = rankq.

Proof. Let |¢) be a sequence of states with |ix) — |¢) such that
rank () < r. We show that rankq(|¢p)) < r. By Lemma 4.2.4
there exists tensor decomposition

o) =Wl e owq,)

sucht that [|[W[||; = /7 fori =1,...,n — Tand |W" ||, = /Tox [ $x)-
Since |¢x) — |) there exists a constant C such that

Vv </l +C

which implies that (W]E])keN is a bounded sequence for every i €
[n]. By the Bolzano—Weierstra Theorem (Theorem 4.2.1), there exists
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3
[
VAV
[ ] [ ]
1 2
Figure 4.3: A tree with 3 vertices giving

rise to the decomposition in Equation
(4.6).

a subsequence (WH) /e converging to a matrix W for every i €
{1,...,n} which 1mp11es that

) =wlle...owha,),

i.e. rankq(|yp)) < r. O

Note that the same results hold for unconstrained (2-decompositions of
multipartite matrices.

The nonnegative and the separable decomposition

Theorem 4.2.6

Let O bea tree, | T) a nonnegative tensor and p an n-partite separable
matrix. Then, the following holds:

(i) nn-rankn (|T)) = nn-rankq(|T))
(ii) sep-rankn(p) = sep-ranky(p)

Similar to the proof of Theorem 4.2.2, we first prove a lemma on the
existence of normalized decompositions.

Lemma 4.2.7

Let Q) be a tree and p € Mat,(C)®" be a separable matrix with
sep-rank(, (p) < r. There exists a separable Q2-decomposition with

|Z| <r
0= Z P [n]
aeLF

such that

> tr(p [i]) < 1forevery p € TP andi € [n—1]

> Z tr(p [n] tr(p).

pezti

We first give an idea of the normalization procedure when () is a tree
of three vertices according to Figure 4.3. In this case, the separable
decomposition of a state p is given by

B3]

=Y el 0l (4.6)

a,y=1

Note that none of the local matrices in the decomposition is normalized,
except the global one by tr(p) = 1. Replacing the first two local families
of matrices by




fori € {1,2} and the third family by

Tpog, = 1T (P[ﬁlD (P[ﬁzb Obupe

we again obtain a separable decomposition

p—ZU @0y @ oy
a,7=1

that satisfies the properties in the lemma, since

tr (UE]) =tr (Ug]) =1
forpe{l,...,r} and

7

3 k) = 30 o) o) o)
w,p=1 w,p=1
r

=3 (el wpp @p) = trip)
w,p=1

where we have used the multiplicativity of the trace with respect to the
tensor product'*. Note that a similar normalization procedure can be
done for every other arrangement of local spaces.

Proof of Lemma 4.2.7. We prove a stronger statement by induction over
the number of vertices n. Specifically, we show that for every family
(ps)sez with a joint Q-decomposition

= on ®pn, @ @0k Dy 5 47)

weIF

the local tensors can be chosen such that tr (p[ﬁi]) =1forf e 7% and
ie{l,...,n—1},and

> trlog) = tr(py)-
peTFn

Setting 6 = 1 proves the claim. The idea of the induction step is shown
in Figure 4.4.

For n =1 (i.e. a single vertex) the statement is trivial.

For the induction step n —1 — n, choose a joint ()-decomposition
according to Equation (4.7) without normalization constraints. We assume
without loss of generality that vertex 1 is connected to precisely two other
vertices.!> We denote the vertices of the first subtree Q1 by {1,...,k1 },and

the vertices on the second subtree ), by {k; +1,...,n — 1}. Moreover,

vertices k1 and n — 1 are connected to vertex n (Figure 4.4). For this
reason, we can rewrite the separable ()-decomposition p; as

1,..k k1+1,...n
YneEL
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14: i.e. for two square matrices A, B, we
have that

tr(A® B) = tr(A) - tr(B).

15: If it is connected to more or less ver-
tices the proof works analogously.
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Figure 4.4: Sketch of the induction step
in the proof of Lemma 4.2.7. We assume
that a normalized decomposition on ev-
ery subtree (), () exists. This implies
that all local elements at the small nodes
have trace 1. Large nodes represent local
elements whose normalization is given
by the global element. In the induction
step, we shift the global normalization
constraint of node k1 and n — 1 to node
n.

2
=

[
1
[ ]
/ V
1S4 \. n—1
Inductlon ‘
M step

Ao A A A
with ] ]
Lkl Z Ptx‘l ®ptx\il Y
pceIg
and [k +1,...n—1] k1 +1] (1]
+1,...n— + n—
o' = P“\; 0 OOl
acTH

where G and H are the sets of facets of () and (), respectively. Applying

the induction hypothesis to p[ k1l and p[klﬂ’ "1 \we obtain that all

tensor factors have trace one, except the tensor factors at position k1 and
n — 1. There, we have

> trlppt)) = (o)

ﬁeff"l
and 1 k1+1 1
> o) = oy ),
ﬁ’eZﬁn 1
Defining
k] 1 (1]
PBy = Tkl LBy
By tr(erl""'kl]) By
ﬁ[” 1. ;p[nfl]
P
and

.k ki+1..n—1
Pt 5 = (ol ) (o) ol
we obtain a joint (2-decomposition
1 ki+1
ps= D Pk © - Bp ]®p£¢‘;” - ®Ph ]®PL‘],

wcI¥

that satisfies the desired properties. Since every tree arises by sequentially
attaching vertices in the described way, this proves the statement. [

We are now ready to prove the absence of gaps for separable and
nonnegative tree tensor decompositions.

Proof of Theorem 4.2.6. The proof is analogous to Theorem 4.2.2. We prove
it again only for separable decompositions; the statement for nonnegative
decompositions follows by considering separable decompositions of
diagonal matrices. Let (px)xen be a sequence of separable matrices such



that sep-rank(, (0x) < r and pr — p. We show that sep-rank, (o) < r.
To this end, let

= Xl g0 anll,

aeZ”
be a normalized decomposition according to Lemma 4.2.7. We have that
tr(p[ﬁi}k) = 1foreveryi € {1,...,n—1} and tr(p/[;f;() < tr(p) + C for
a suitable choice of C due to the convergence p; — p. Hence, every
tensor factor is a bounded sequence which has a convergent subsequence

(i (1]

Ppk, = Pp for £ — oo due to Theorem 4.2.1. Since py — p, we have that

1 n
p= 3 ool
aeIf

which shows that sep-rankg, (p) < 7. O

The psd decomposition and the local purification form

We now prove that for every tree (), neither psd ()-decompositions nor
QO-purifications exhibit a gap between rank and border rank. The proof
strategy is similar to other cases without gaps: We use that there is a
bounded decomposition with the same expressiveness and then apply
the Bolzano-Weierstrafl Theorem. In this case, we additionally use the
correspondence to correlation scenarios (Theorem 3.2.1) and the absence
of gaps for unconstrained decompositions (Theorem 4.2.5).

Theorem 4.2.8

Let Q) be a tree, | T) a nonnegative tensor and p a psd matrix. Then,

(i) psd-rankn(|T)) = psd-rankq(|T))
(ii) puri-rankn(p) = puri-rank,(p)

To prove the theorem, we need the following preparatory lemma:

Lemma 4.2.9

For every sequence of quantum channels

(5k : Matdl (C) — Matdl (C)>k€]N,

there exists a convergent subsequence.

Proof. Let Lin(dy,d>) be the set of all linear maps

L: Maty, (C) — Matg, (C).

We prove that the set
CPTP(dy,d,) := {€ € Lin(dy,dy): Eiscptp}

is compactin Lin(dy, d3). The statement follows then by Bolzano-Weierstra88
(Theorem 4.2.1).

4.2 Absence of gaps

61
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Equipping the space Lin(dq, dy) with the norm

£l == max ||&€
€= max, ()]

where || - ||1 is the trace-norm on Maty, (C), we obtain that ||| < 1 for
every £ € CPTP(dy,dy), which shows the boundedness.

Moreover, CPTP(dy,dy) is closed since it can be characterized by the
closed conditions id, ® £(A) > 0 for every psd A € Maty, .,(C) and
tr(£(p)) = tr(p) for every p € Maty, (C). Since intersections of closed
sets are closed, we obtain compactness of CPTP(dy,d3). O

Proof of Theorem 4.2.8. We prove the statement only for puri-rank, as
the case of psd-rank, works similarly. Let (i )ren be a sequence of psd
matrices such that puri-rank, (ox) < r and pr — p. We need to prove
that puri-rankq (p) < 7.

By Theorem 3.2.1 there exists a sequence of states | ) withrankq (|¢)) <

r and a sequence of quantum channels El-(k) for every i € [n] such that

oe= (P @ 2 &) (Ip) (wel)-

Since the space of quantum states is compact (we have that (¢ | ) =1
for every |¢)), and by Lemma 4.2.9, there exists a joint subsequence ky
such that

&= lim & and |y} = lim |gy,),
P o0 {—s00

which implies that

p=(&1@--@&)([¢) (¢]).

Since rank = rankg (see Theorem 4.2.5), we have that rankn (|¢)) < 7,
which proves that puri-rank, (p) <.

The proof for the psd-rank similarly uses Theorem 3.1.2 and the fact that
every sequence of a POVM has a convergent subsequence that converges
to a POVM by the Bolzano-Weierstrafs Theorem. O

4.3 Applications

Let us now present three implications of the existence and absence of
gaps between ranks and border ranks:

» In Section 4.3.1 we show that the existence of gaps leads to instabil-
ities for optimization problems over tensor network manifolds.

» In Section 4.3.2 we prove a correspondence between postive tensor
decompositions and quantum correlation sets. The gaps between
border ranks and ranks then imply that certain sets of quantum
correlations are not closed.

» In Section 4.3.3 we prove that gaps also lead to new types of
separations between positive tensor ranks.



4.3.1 Instability in optimization

Tensors are in general very costly to represent. For this reason, one often
restricts to approximate representations with a restriction on the rank of
the approximation. In this context, one wants to find for a given n-partite

®n
tensor |T) € (Cd) the best rank r approximation of |T), i.e.

minimize || |T) — [W) ||

. (4.8)
subject to rank(|W)) < r.

For the case of bipartite tensors (i.e. matrices), this minimization prob-
lem has an analytic solution by the Eckart-Young-Mirsky theorem.!®
Specifically, if || - || is an unitarily invariant norm', then for every matrix
A € Mat,(C) with singluar value decomposition

A= o lug) (ol

d
=1

and singular values oy > 02 > ... > 04 = 0, the solution of Equation
(4.8) is given by

.
Ar =" o fug) (vl
k=1

i.e. considering the largest r singular values.

For other norms, no analytic formula is given; however, Equation (4.8)
has a solution since the set of feasible points

T :={A € Mat;(C): rank(A) < r}

is topologically closed. This is equivalent to the matrix-rank being lower
semi-continuous, i.e. for every sequence Ay — A for k — oo, we have

rank(Ay) <r = rank(A) <r. (4.9)

Also for positive matrix ranks, Equation (4.8) has a solution. This again
follows from the fact that the nonnegative and the psd matrix rank'® are
lower-semi continuous. For a direct proof of these results we refer to
[18] for the nonnegative matrix rank and to [49, Theorem 2.12] for the
positive semidefinite matrix rank. Note that these results are a special
case of Theorem 4.2.6, Theorem 4.2.5, and Theorem 4.2.8 considering the
tree with two vertices and one edge.

By Equation (4.9), we have shown that the multipartite tensor ranks are
lower-semicontinuous for tree structures, which implies that the best
rank 7 approximation problem has a solution in these cases.!”

However, the gaps between border rank and rank exemplify that Equation
(4.8) does not have a solution for arbitrary tensor decompositions. For
example the problem

minimize || |T) — [Wy) ||

, (4.10)
subject to ranky, (|T)) < 2
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16: This result goes back to Eckart and
Young [45] for the Frobenius norm, and
to Mirsky [85] for arbitrary unitarily in-
variant norms.
17: Anorm || - || is called unitarily invari-
ant if

[UA[ = [lA]
for every matrix A and unitary matrix U.
Examples of unitarily invariant norms
are the Frobenius norm, the spectral
norm, or more generally every Schatten
p-norm with parameter p > 1.

18: See Example 2.3.5 and Example 2.3.7
for the definition of these ranks.

19: Similar to the positive matrix factor-
izations, this result does not say anything
about the efficiency of computing these
approximations.
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Figure 4.5: A witness function f for a
given probability distribution P outside
of asubset C. f separates P from C. Since
f(P) < 0and f is continuous, it remains

negative for a small neighborhood of P.

This is only possible if C is closed.

where |W,,) is the n-partite W-state does not have a solution because we
can find a rank-2 approximation of |W,,) for every approximation error
£ > 0 (see Corollary 4.1.2). In other words, the set of feasible tensors

— { IT) € (Cd)®n : ranky, (|T)) < 2}

is not closed for n > 3.

In summary, we have the following statement:

Observation 4.3.1

For any type of t-rank, the minimization problem of Equation (4.8)
has no solution if and only if there is a gap between border rank and
rank for this t-rank.

4.3.2 Quantum correlation scenarios

In Chapter 3 we proved a correspondence between positive tensor
decompositions and correlation scenarios. We now show that these
correspondences together with the gaps between ranks and border ranks
imply that the sets of correlations are not closed. It follows that it is
generally impossible to test membership of a probability distribution in
these sets with a finite number of measurements.

We prove non-closedness for CQCorr (g, ,(1,d,7), for other sets, the
argument is analogous. Let (| P;) )xen be a sequence of tensors represent-
ing a probability distribution with limy_,, |P¢) = |P) and exhibiting a
gap between rank and border rank (see Proposition 4.1.6), i.e.

psd—rank(@mC (|P¢)) < r < psd-rank (©,Cn) (|P)).
Then P, € CQCorr(g, c,)(n,d,r) for all k € N while
P ¢ CQCorrg, c,)(n,d,1),

i.e. CQCorr(q,)(n,d, r) is not closed.

The closedness of correlation sets is essential to test membership. Cer-
tifying that a probability distribution P does not arise from a certain
correlation scenario is based on constructing a continuous witness func-
tion
4\ &n
£ (IR ) —R
that satisfies the following properties:

> f(Q) > 0forevery Q € CQCorr( (1, d,7)

> f(P)<0
Guessing P from finitely many samples results in an approximation P
that is close to P with high probability. Therefore, if the guess P satisfies
f(p ~) < 0, we can infer that P does not arise from the correlation scenarios
with high probability. This follows from the fact that if f(P) < 0, then
also f(P) < 0, if P is in some neighborhood of P (see Figure 4.5).

But such witness functions only exist if CQCorr(q, ) (n,d, ) is closed.
If P ¢ CQCorr(q(n,d,r) lies on the boundary, a potential witness



function must jump’ in P which contradicts its continuity. Thus it
is impossible to witness P ¢ CQCorr( g)(n,d,r) from finitely many
samples of the probability distribution.

According to the gaps between ranks and border ranks (see Figure 4.2)
the same behavior appears in the following cases:

> Testing the ranky, forn > 5.
> Symmetrically testing ranky, s, ) forn > 3.
> Symmetrically testing rank g, c,) forn > 17.

Analogously, one can show that QQCorr(q i) (n,d,r) is not closed in the
above situations.

In contrast, the set of classical correlations CCorr(n,d,r) is closed for
every choice of n,d,r € IN. This follows from the fact that nn-ranky,
does not exhibit a gap between border rank and rank, and hence for
every converging sequence of nonnegative tensors |P) — |P) with
nn-ranky, (P;) < r we also have nn-ranky, (|P)) < r. For every P ¢
CCorr(n, d, r) there exists a separating witness since the distance between
CCorr(n,d,r) and P is strictly positive. Moreover, the sets of quantum
correlations CQCorrqy(n,d, r) and QQCorrqy(n,d, ) are closed if Q) is a
tree.

4.3.3 Separations for approximate tensor decompositions

Various notions of positive tensor decompositions exhibit separations
[49, 68], meaning that there exist families of bipartite tensors (| Tj) )jen
where |T,;) € C? ® C? such that

rank(|T;)) = const. and psd-rank(|T;)) — co

as d — oo. Moreover, there is also a family of bipartite tensors (|S;) )N
such that

psd-rank(|S;)) = const. and nn-rank(|S;)) — co.

Are these separations robust with respect to approximations? In [38]
it is proven that for fixed approximation error ¢ > 0 and a fixed norm,
the separations between rankq, psd-rank and nn-rankq disappear.
More precisely, rank®(T), psd-rank®(T), nn-rank®(T) (see Equation (4.1))
can be upper bounded by a function depending only on ¢ and ||T||,
independent of the dimension of the tensor product space. However,
if the choice of ¢ > 0 and vector space dimension is too small, this
upper bound exceeds trivial dimension-dependent upper bounds. So the
bounds are only meaningful when the dimension of the tensor product
space is large.

We will now prove a “dual” statement. If the dimension of the tensor
product space is fixed, there exists an error € > 0 such that the separation
between rank and nn-rank persists.

4.3 Applications
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Theorem 4.3.2

There exists a family of nonnegative tensors (|T;)),en with

|Tu) € (C"’) .
and a family of approximation errors £, > 0 such that
nn-rank® (|T;,)) = n.
We have also that
ranky, (|Ty)) = psd-ranks, (|Tx)) =2
for every € > 0 independent of 7.
Proof. Let |Ty,) = |W,) the family of n-partite W-states. For fixed n € IN,
we know that
nn-ranky, (|Wy)) = nn-ranky, (|W,)) = n.
Therefore there exists a €;;, > 0 such that
nn-ranky’ (|Wy)) = n.
For the second statement, recall that

ranky (|Wy)) = psd-ranky, (|Wy)) = 2.

Since
ranky, (|[W,)) < ranky (|Wy)) =2
and
psd-rankgzn(|Wn>) < psd-ranky, (|Wy)) =2
for every € > 0, this proves the statement. O

4.4 Conclusions and outlook

In this chapter, we have shown that many gaps between ranks and border
ranks persist when introducing positivity and invariance constraints for
tensor decompositions, and explored its consequences. More precisely,
we have proven that:

» The standard and symmetric tensor decompositions exhibit gaps
between border rank and rank for the psd-decomposition and local
purifications (Subsection 4.1.1), and the gaps disappear for the
nonnegative and separable decomposition (Theorem 4.2.2);

» Most of the gaps persist for cyclic and translational invariant
decompositions (Subsection 4.1.3 and Subsection 4.1.2);

» There are no gaps for tree tensor decompositions, regardless of
positivity constraints (Theorem 4.2.6);

Many of the examples exhibiting a separation are n-partite tensor de-
compositions with nn > 3. This leaves open the question whether gaps



between border ranks and ranks exist for positive and invariant 3-partite
decompositions.

Other surprising properties of tensor decompositions appearing already
at n = 3 include the fact that tensor rank and border rank are non-
additive with respect to the direct sum [109, 111, 27], and that they are
also non-multiplicative with respect to tensor products [28, 26]. Do these
properties also hold for positive and invariant decompositions? And
what are their implications for correlation scenarios?

4.4 Conclusions and outlook
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Polynomial decompositions
inspired by tensors

In Chapter 2, we introduced two classes of objects: nonnegative tensors
and multipartite psd matrices. These two classes encompass the two
central structures studied in this part, namely a tensor product structure
and a notion of global positivity.

In this chapter, we introduce yet another vector space structure encom-
passing these two elements: real multivariate polynomials. These are objects
in the tensor product space of polynomials in each of their variables,

P =R, x2,. xRN eRx? @ @R,

where ® denotes the algebraic tensor product and xI a collection of
variables xgl], e x,[fji. In other words, every polynomial p € P can be
expressed as a finite sum of “elementary constituents”

p[l](x[ll) . p[Z](x[2]) e p[n](x[n]),

where every pl! is itself a polynomial that only depends on the variables
x[l. We consider two questions:

» If p is symmetric under the exchange of, say, systems i and j, can
this symmetry be reflected in the decomposition?

» If p is positive (for some notion of positivity), can this positivity be
reflected in the decomposition?

Our framework addresses these two questions as follows, when applied
to polynomials:

(@) The summation structure is described by a weighted simplicial
complex (), so that every system i is associated to a vertex of (),
and every summation index to a facet of (2.

(b) By definition, an (Q}, G)-decomposition of a polynomial contains a
certificate of invariance under the group G. We characterize which
G-invariant polynomials admit an (Q), G)-decomposition.

(c) By definition, a separable or sum-of-squares (sum-of-squares (sos))
(Q), G)-decomposition contains a certificate of invariance and of
membership in the separable or sos cone, respectively. We character-
ize which separable or sos polynomials admit such decompositions.

Our framework models symmetries as follows: we have a group G acting
on the set {1,...,n}, and the induced action on the polynomial space P
is obtained by permuting system [i] to [gi],

g xl! 5 gxlil = x[81], (5.1)
A polynomial is G-invariant if it is invariant with respect to all such

permutations ¢ € G, and we want to make this invariance explicit in the
decomposition of p. For example, the decomposition

’
p= Z Paya; (Xm) " Pag,az (X[Z]) © Pag,m (x[n]) (5.2)

e yp=1

This chapter is based on Section 1, 3, 4,
and 7 in [39].
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Note that there are no superscripts [i] in
the polynomials in the invariant decom-
positions.

1: Examples of cones are the sum-of-
squares (sos) polynomials, the cone of
nonnegative polynomials, or the cone
of polynomials with nonnegative coeffi-
cients.

makes explicit that p is invariant under the cyclic group, X[ x[+1],
And

p =3 palxd) - pu () - pa () (5.3)
a=1

makes explicit that p is invariant under the full symmetry group.

Finally, if p is in a cone!, we want a certificate of this fact (cf. (c)). In

quantum physics, a mixed quantum state is represented by a psd matrix
and the certificate is called a purification. In probabilistic modelling, the
certificate of a probability distribution is a nonnegative decomposition. In
real algebraic geometry, the natural certificate of positivity of a polynomial
is being sum of squares. In all of these cases, witnessing the positivity of
a global element is a central problem with many ramifications.

Note that decompositions of tensors and polynomials have been studied
from different perspectives. Also symmetries and positivity have been
considered together, but the arising decompositions are by far not as
clean as the corresponding separate decompositions. To give a short
overview, and also motivate our combined approach, let us explain some
of the existing decompositions, and point out why they are not directly
related to our approach.

» The Waring decomposition is a decomposition of polynomials, also
inspired by tensors. Let p € R]xy, ..., x,] of degree d. The Waring
rank of p is defined as the minimum r € N such that

r
p= anéa(xl, .. .,xn)d
a=1

where 4 (x1,...,%,) = ay1X1 + ... + A Xy is a linear form. The
Waring rank is equivalent to the symmetric tensor rank via the

Correspondence
d
p= 3 Gueein T x5,
jl/m/]’n:l

between symmetric tensors in T € (Cd) o and homogeneous
polynomials of degree 7. Yet, the Waring decomposition cannot
exhibit any additional symmetry of the polynomial, since the
corresponding tensor is already fully symmetric for any polynomial.
For generalizations of the Waring problem to polynomials instead
of linear forms, we refer to [52]. Another related decomposition is
the completely decomposable decomposition [1].

» For symmetric polynomials, the decomposition into power-sum
polynomials is an example of an explicitly invariant decomposition.
Every symmetric polynomial p can be writtenas p = q(p1,...,pn),

where
n
114
Pa = Z i -
i=1

In other words, the ring of symmetric polynomials with real coeffi-
cients corresponds to the ring R[py, . .., pn] generated by power-
sum polynomials. The same statement is true by replacing the set
of power-sum polynomials by elementary symmetric polynomials.
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> Also, the combination of symmetry and positivity is well-studied. It
is, for example, known that symmetric sum-of-squares polynomials
do, in general, not decompose into a sum of symmetric squares, to
fully characterize the set of symmetric sum-of-squares polynomials,
one has to introduce a more general notion of symmetric sum-of-
square decomposition [43].

In this chapter, we do the following:

» We define invariant decompositions of polynomials (Definition
5.1.1). We show that every invariant polynomial admits an invariant
decomposition if the group action is free on the weighted simplicial
complex (Theorem 5.1.2). In addition, every invariant polynomial
can be written as the difference of two invariant decompositions if
the group action is blending (Theorem 5.1.7).

» We define the invariant separable decomposition (Definition 5.1.2),
and the invariant sos decomposition (Definition 5.1.3), and show
that every invariant separable/sos polynomial admits an invariant
separable/sos decomposition if the group action is free (Theorem
5.1.8 and Corollary 5.1.12, respectively). These decompositions
combine positivity and symmetry in a clean way.

» We provide inequalities and separations between the ranks of three
invariant decompositions (Proposition 5.2.2 and Corollary 5.2.6,
respectively).

5.1 Invariant polynomial decompositions

In this section we define invariant polynomial decompositions and
their ranks. To this end we first set the stage (Section 5.1.1), define and
study the invariant decomposition (Section 5.1.2), the invariant separable
decomposition (Section 5.1.3), and finally the invariant sum-of-squares
decomposition (Section 5.1.4).

5.1.1 Setting the stage

Throughout this section we consider polynomials in the space
P =R, x2, . xM 2 RxeRx?] - @Rx")]

where ]R[x[i]] = ]R[xgl], cey x,[f}].] is the space of real polynomials in m;
variables, and ® denotes the algebraic tensor product. These polynomials
use collections of local variables, denoted x[i], for each local site i =
1,...,n. The case where all m; = 1 is already very interesting, as it
describes how the multivariate polynomial ring is decomposed into a
tensor product of univariate polynomial rings.

In particular,

Rix, . xRV o RxP ] - @ R[xM),
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where x7 is a single variable, means that every multivariate polynomial
can be expressed as a sum of products of univariate polynomials, i.e.

p= ZP x[l] [”](x[n]»

We define the local degree of p € P, denoted deg; .(p), as the smallest
positive integer d € IN such that

pEPyi= ]R[x[l]]d ®]R[x[2]]d ® - ®]R[X[n]}d

where R[x]; is the space of real polynomials in x of degree at most
d. A polynomial with deg, .(p) < d contains monomials consisting of
variables in x[!/ with degree at most d, for each i. Note that the local
degree can be related to the (global) degree of the polynomial by

degloc(p) < deg(p) <n- degloc(p)'

A group action G on [n] induces a group action on the space P, defined
forg € Gand p € Pby

(gp)(xW, .. xIMy = p(xl81, L xlsn)y, (5.4)

Note that this definition only makes sense if the local polynomial spaces
R[x!] and R[x[/)] are isomorphic whenever i,j € [n] are in the same
orbit of G (i.e. gi = j for some g € G), i.e. the number of local variables
needs to coincide for i, j, namely m; = m;. The canonical isomorphism
between elements in R[x[1] and R[x/]] is given by replacing the variables
xl] with x7l in every polynomial and vice versa. We will frequently use
this isomorphism in an implicit way, as for a polynomial p[i] € lR[x[i]]
we will denote its corresponding element in R[x/!] as pl (x[1).

We say that p € P is G-invariant if for each ¢ € G we have gp = p, or
equivalently

p(xI8Y, . xl8y = p(xU, . x[) forevery g € G.

For example, if m; = 1 and G is the full permutation group on [n], then
a polynomial p is invariant if

p(xll, . 2y = p(xlo®], ol

for every permutation ¢ : [n] — [n], which means that p is invariant
with respect to arbitrary permutations of variables.

Similar to the tensor decompositions in Chapter 2, we consider 7 to be

a finite index set, and write a map «: f- —+ T asatuplea € I}— with
entries from 7 indexed by the facets in F.Ifwehavea functiona: F — T
and want to restrict its domain to ; (for some index i € [n]), in the tuple
notation we again write

0(‘, = DC‘~ S I}-l/
1 ]:l

which means that we delete all entries which are indexed by a facet not
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containing i. We will in general stick to the functional notation except
for the examples, where we will switch to the tuple notation. Their
connection will be made explicit in the examples.

5.1.2 The invariant decomposition

We now define the basic invariant decomposition similar to Defini-
tion 2.3.1, called (Q), G)-decomposition. Afterwards we will study the
existence of decompositions without invariance, the existence of invari-
ant decompositions with free group actions and with blending group
actions.

The idea of the invariant decomposition is to consider finite sums of
elementary polynomials (i.e. polynomials written as a product of local
polynomials depending on one collection of variables x[), where each
local polynomial is associated to a vertex of (), and the summation indices
are described as functions «|, on the facets. The following definition is
illustrated in Example 5.1.1, Example 5.1.2, Example 5.1.3, Example 5.1.4,
and Example 5.1.5.

Definition 5.1.1 ((Q, G)-decomposition of polynomials)

Let p € P. An (Q, G)-decomposition of p consists of a finite index set
7 and families of polynomials

[ . ([l _
P <P B )ﬁezfi
where p/[;] eR {xm] foralli € [n], such that
(a) p can be written as

p=" pa () pl) ()

weTF

(b) Foralli € [n],¢g € Gand B € I Fi we have
py (xt1) = pi&) (1)

where 3§ is defined in Equation (2.4).

The minimal cardinality of Z among all (), G)-decomposition of p
is the (Q, G)-rank of p, denoted rankq c)(p). If p does not admit an
(Q, G)-decomposition, we set rankq, ) (p) = .

Also, if G is the trivial group action, we call the (Q), G)-decomposition
just Q-decomposition and denote its rank by rankg, .

Condition (a) provides an arrangement of the summation indices encoded
in the functions &, and Condition (b) ensures that the decomposition
has the desired symmetry by requiring that the coefficients of local
polynomials in different local spaces coincide. Note again that this
equality only makes sense if the collections xll and x[87 have the same
cardinality (i.e. m; = mg;).
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2: See Example 2.2.4 for its definition.

We refer to Example 2.3.4 for the analo-
gous example concerning tensors.

If a polynomial has a (Q), G)-decomposition then it is G-invariant since

gp = p(x8, . xlsn)y = 3 pi 1] x(s10) pL} (xlsm)

aeTF
= 2 il o) g )
acTF
-y pgl (xI1]) pgzglqn (xl")
weT? ‘
= 3 P )l () =
weZ?

where we have used Definition 5.1.1 (b) in the third equality, and the fact

that & — $a is a bijection on Z7 and that i ~ gi is a bijection on [n] in
the fifth equality.

In the converse direction, the following holds: If a polynomial is G-
invariant, then it has an (), G)-decomposition if G acts freely on () (see
Theorem 5.1.2).

The existence of an ((2, G)-decomposition might imply an even stronger
symmetry than G-invariance. As we will see in Example 5.1.4, the ex-
istence of a (X, G)-decomposition for any transitive group action of
some group G already implies S;-invariance. This is closely related to
the action not being free.

Let us now revisit our running examples — the simple and double
edge — in the light of invariant polynomial decompositions.

Example 5.1.1 (The simple edge with invariance)

On the simple edge A;, the elements in 77 are just single values, and
thus the corresponding decomposition is given by

P—ZP 2 (x),

The Cp-invariant decomposition is given by

p= ZP pa(x?).

Example 5.1.2 (The double edge with invariance)

For the double edge? A we have two facets and thus the A-decomposition
reads

2
p= 30 L) ).
w,p=1
Note that the order of the indiced &, 8 does not matter here, since there
is no connection between the local polynomials at site 1 and 2. But for
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the non-trival C, action, Definition 5.1.1 (b) specifies that

1 2
P = Pups

so an (A, Cp)-decomposition is of the form

p= pupxl)ppa(x?). (5.5)
a,p=1

Let us now consider an invariant polynomial on the double edge which
we will revisit in Example 5.1.11 in the light of sum-of-squares invariant
decompositions.

Example 5.1.3 (Invariant polynomial on the double edge)

Consider the polynomial

p= x2+y2+4(1+xy)2
=4+ 8xy + x> + > +4x%y* € R[x] @ R[y]

which is invariant with respect to the permutation of x and y. A (A, Cy)-
decomposition of p has the form

with

15

1
p1a(t) = 5 +2£%, pi2(t) = p2a(t) = 3

It is easy to see that a decomposition of rank 1 does not exist, showing
that the (A, C;)-rank is indeed 2.

Let us now see more standard examples of (€}, G)-decompositions based
off the weighted simplicial complexes presented in Section 2.2.1.

Example 5.1.4 (The simplex decomposition)

For n > 2 consider an n-simplex ¥, whose facets are given by F =
{[n]}. Since F only contains one facet encompassing all vertices, the
corresponding X.,,-decomposition is given by

r
p= Z le] (x[l]) . pLZ] (X[Z]) . an] (X[n])
a=1

The minimal integer r among all such decompositions is the ranky, (p).
Now assume there is a group action G on [n] which is transitive, i.e. it
generates only one orbit, namely Gi = [n] for alli € [n]. Then Definition

5.1.1 (b) requires p,[,f] = pg] for all i, j, @, and hence the corresponding
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3: See Example 2.2.3 for its definition

(£, G)-decomposition reads

p= Zpa(xm) . pa(x[z]) . Pa(x["])-
a=1

This decomposition is manifestly fully symmetric with respect to every
permutation of x// with xUl. The minimal such r is the rank(y, cy(p)-

Example 5.1.5 (The cyclic decomposition)

For n > 3 consider the circle ®,,.° The ©,,-decomposition of p reads

,
p= 2 Pllan ) R )l ()

(X],...,t)(n:1

The minimal such r is the rankg, (p).
Since the cyclic group C, acts freely on ©®,, we obtain the (®,,Cy)-
decomposition

P= 3 Pare ) P (2) - pagy (X7,

&1,y =1

This decomposition is manifestly ti, that is, invariant with respect to
permutations xl1 — xl*t1] for 2 € IN where addition is modulo 7 + 1.
Note that polynomials with such a decomposition are generally not
Sp-invariant. The minimal such 7 is called the rank g, ¢, (P)-

Decompositions without invariance

The first result on the existence of polynomial decompositions does not
involve any invariance. It is an adaption of the result for tensor decompo-
sitions [37, Theorem 11], which we will prove here for completeness.

Theorem 5.1.1 (Existence of ()-decompositions)

For every connected WSC () and every p € P there exists an ()-
decomposition of p. Moreover, the ()-decomposition can be obtained
by using nonnegative multiples of the elementary decomposition

p=3 P p P ) - () (5.6)
jeT

where 7 is a finite index set and p][i] e R[x] forallj € Z.

Proof. We start with an elementary polynomial decomposition of Equa-

tion (5.6). This will show that ranky, (p) < co. Fori € [n] and p € 17
we define

(5.7)

p[i] . { p][i] : B takes the constant value j € 7
g =

0 : else.
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Since () is connected, for &« € Z7 the restricted functions w|, are all
constant if and only if a is constant. It follows that

Z~ pg‘]l (x1y. .. PL’H (xIy =% p][u (x1y ... pj[nl (xI")

xels jeT

=p(x1,...,x")

is an ()-decomposition of p. O

Note that the ()-decomposition obtained by reusing the polynomials of
Equation (5.6) may not be optimal, i.e. it may need more terms than its
rank.

Invariant decompositions with free group actions

We now show that if G acts freely on (), then every G-invariant polynomial

admits an (Q, G)-decomposition.* The proof is similar to that of [37,  4: Recall that free was defined in Defini-
Theorem 13] for tensors. We will illustrate the idea of the proof on the ~ tion2.2.5.

double edge A in Example 5.1.6.

Theorem 5.1.2 ((Q), G)-decompositions with free group actions)

Let Q) be a connected weighted simplicial complex, G a free group
action on (), and p € P a G-invariant polynomial. Then:

» The polynomial p admits an (Q), G)-decomposition.

» Given a X.,-decomposition, an ((, G)-decomposition of p can
be obtained by using only nonnegative multiples of the local
polynomials in the X;;,-decomposition.

As in Theorem 5.1.1, the (), G)-decomposition obtained by “reusing”
the polynomials of Equation (5.6) will generally not be optimal.

The idea of the proof is simple. Starting from the decomposition in
Equation (5.6), we essentially build

1
@ngzp

8€G

where gp is defined in Equation (5.4), and let g act on each of the local
terms in the decomposition. The latter can then be transformed into an
(Q), G)-decomposition of p.

For the proof of this theorem we need a preparatory lemma:

Lemma 5.1.3

A group action G on the WSC () is free if and only if there exists a
G-linear map _
z: F =G

where G acts on itself via left-multiplication (which is obviously
free).
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Proof. To construct z for a free action, choose for each orbit an element F
and map gF to g. The reverse implication is immediate. O

Proof of Theorem 5.1.2. Since G acts freely, by Lemma 5.1.3, there exists a
G-linear map z : 7 — G, where G acts on itself by left-multiplication.
In the following, we fix one such mapping. For the polynomial p we
first obtain by Theorem 5.1.1 an (2-decomposition and denote the local

elements by
[ .— (]l -
Qr = ( /9( )>/SeI]:z‘
[i]

where xl1) € R[x1] for every i € [n]. We define a new index set
qp y
T=IxG

together with the projection maps 77 : 7 — Tand mp: T — G.For each
i € [n] and B € Z7i we define the following local polynomials:

, [gl] X _ (g1

: else.

Note that pg] (x1) is well-defined since g is uniquely determined by the
relation mopf=(8 7lz)| if such a g exists. This is due to the fact that

if (§1 z) = (%2 z)‘ we have g1 - z(F) = g5 - z(F) for any F € F; by
G- hnearlty of z. But this implies that ¢g; = g». In addition, the defined
local polynomials satisfy Definition 5.1.1 (b) since for g, € G we obtain

[hi] ¢ [i] [ghi] [i] [ghi] [y — i (5[0
pi) () = g1 oty = gl el = pllxd)
using the fact that

o= (),

= mof= ((gh)flz)l .

i i

It only remains to show that the local polynomials form an (Q, G)-
decomposition of p. To this end we compute

> pay )il ()

aclF
1 n n
Z Z qqél)la‘ [1] q[gn(z]‘ )(x[ ])~
zer weT¥
vidgiz = (%

li

Using that () is connected and z is G-linear, for each z fulfilling the
conditions from the outer sum on the right, we obtain g; = g; =: ¢ for
alli,j € [n]. So the corresponding inner sum becomes

D7 i () gy () = (s,

xel”

= p(xm,...,x[n]),

using G-invariance of p. Hence the total sum equals a positive multiple of
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p, where the factor is the number of all z which fulfill the above conditions.
In fact, this number is just |G/, since the &'z for g € G are precisely the
different choices for z. So dividing by |G| and absorbing its positive nh
root into the local polynomials yields an (), G)-decomposition of p. The
last statement is immediate by construction. O

The following are some immediate relations between the various notions
of ranks, based on the proofs of Theorem 5.1.2 and Theorem 5.1.2.

Corollary 5.1.4 (Relations among ranks)

Let Q) be connected and G a free group action on (), and %, the
simplex.® Then for every G-invariant p € P we have 5: Defined in Example 2.2.1.

rank(o,c)(p) < |G| - rankn(p) < |G| - rankg, (p).

In words, the first inequality says that one can impose invariance by
increasing the rank by a factor of at most |G|. The second inequality
says that the standard tensor rank is always the most expensive rank, i.e.
having one joint index is the most costly decomposition.

Proof. The first inequality is immediate from the construction in the proof
of Theorem 5.1.2, and the second inequality follows from the construction
in the proof of Theorem 5.1.1. O

Let us now illustrate the proof of Theorem 5.1.2 for the double edge.

Example 5.1.6 (Invariant decomposition on the double edge)

The cyclic group C; provides a free group action on the double edge
A, so every Cy-invariant polynomial admits a (A, C;)-decomposition,
given by Equation (5.5). Let us now construct this decomposition.

For the group action of C; = {e,c} on F = {a,b} (with ca = b) there

exists a G-linear map z : F — G, which can be chosen as® 6: There is exactly one other choice,

namely exchanging the two outcomes
z:ar—e, b—c. of z.

We start with a A-decomposition of p, namely

p=> aus() g (),
«,p=1

where we associate index & with a and B with b. To construct a (A, C)-
decomposition, we extend the indices &, § to tuples («, 1), (B, §2) where
31,82 € Cy. We define the local polynomials as

abs () i (g1,82) = (e,0)
(1] 1y . .
Plagopen ™) =1 a6 if (g1,82) = (ce)

0 else
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7: See Definition 2.2.5 for free group ac-
tions.

8: ie. for every i1,...,1, € {1,...,d}
and permutation ¢ € S, we have

(i1, in | T) = (o(iy), .., o) | T).

9: This is because (—1)" = —1 for odd
n.

and

g2 if (g1,82) = (e,0)
gan (P if (g1,82) = (c.e)

0 else.

2] 2y .
p(a,gl),(ﬁ,gz)(x )=

Forwa,p € {1,...,r} and g1, g2 € Cy, the symmetry condition gives rise
to the definition

[e1] _ 2 _ . .
Pe((ag1).(882) = PBga)wg) = Plagi)(Bga) = Plag)(Bg2)

In addition, it is easy to verify that

2 2
Yo D PlasnBen ) Pipgnwen ()
81,82€C o, f=1

:p(x[l},x[ﬂ) + p(x[Z],x[l]) - zp(xmlxm)

0g)(B.g forma (A, Cy)-

. 1
which shows that the local polynomials 7P )
decomposition of p. This also implies rank, ¢,)(p) < 2-7.

Invariant decompositions with blending group actions

Since the full symmetry group S, is not free on the simplex X.;;, Theorem
5.1.2 does not say anything about the existence of (%, Sn ) -decompositions.
In fact, for real polynomials, such decompositions may not exist (see
Example 5.1.7). Nonetheless, we can prove another, weaker existence
result for polynomial decompositions with a blending’ group action G
(Theorem 5.1.7). In preparation for this result we need the following two
lemmas. The first lemma introduces a “negative part” in the symmetric
decomposition, which can be omitted if 7 is odd:

Lemma 5.1.5 (Symmetric decompositions for tensors [32])
Let |T) € R?® --- ® R? =2 R"™ be S,-invariant.® Then there exist
ri,r2 € Nand |01),...,vr,), [0r,41) - -, [0r,4r,) € RY such that

] r1+13
IT) =) o) = D [09)®" (5.8)
=1 €:1’1+1

If n is odd, there exists a decomposition
5!
IT) =3 log)™".
(=1

The last statement is not given in [32], but it is obvious, since the minus
sign can be absorbed into the odd number of terms 1.’

The minus sign in Equation (5.8) is necessary. Consider for example
the the simple case of real matrices, namely when the corresponding
tensor |T) lives in the space R? ® R? = Mat,(IR). Without a minus sign,
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Equation (5.8) in the matrix picture would read!? 10: by using the correspondence be-
tween |v) |w) and |v) (w|.
"
T=> |og) (v¢] =0
(=1

implying that every symmetric matrix is psd which is false. (see also
Example 5.1.7).

In the next lemma we show subadditivity and submultiplicativity of the
(Q), G)-rank. For a proof, we refer to [37, Proposition 16].

Lemma 5.1.6 (Subadditivity and submultiplicativity [37])
Let p1,p2 € P.

(i) rank(q )(pl + p2) < rank(q g)(p1) +rank(q c)(p2)
(ii) rank ¢)(p1-p2) < rankiq ) (p1) - rankq G (p2)

We are now ready to prove the existence of invariant decompositions
with blending group actions.

Theorem 5.1.7 (Invariant decompositions, blending actions)

Let () be a connected WSC and G a blending group action on (). For
any G-invariant p € P there exist two polynomials 41, g, € P with

P =491 — 492,

where g1, g attain an (Q), G)-decomposition. If n is odd we can set
q2 = 0.

Proof. We start with a non-invariant decomposition of p, as given in
Equation (5.6), where 7 is a finite index set. Now we choose real numbers

dg] € Rfori € [n]and ¢ € {1,...,r1 + rp}, such that the following

holds:
r1 . .
] . lin] _ i) i) _ [ 1 i, i} = [n]
SULRE A SRR SR O
/=1 l=r1+1

This is possible because the tensor on the right hand side is real and
symmetric, hence the existence follows by Lemma 5.1.5. For i € [n],

¢e{l,...,r1 +r2} and B € Z7i we define

(8] [gl s ,
(1] ( x[i]) . Z d : Bis the constantj € 7
Pep : g€G
0 :else

For fixed ¢, the polynomials pg]ﬂ satisfy Definition 5.1.1 (b) and hence

give rise to (), G)-decompositions of polynomials

P1r---sPris Pry41sr- -+ s Proitry-
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We now define g; as

"
n=Yn =3 Y Pray, M)l ()
(=1

(= 10(61—}-
5!
_ Z nggll} d[gnn Zpgll x[l]) ][gnn}( [n])
91,81 €G (=1 jeLl

where we have used that (2 is connected in the third equality, and thus
w), constant for all 7 if and only if a is constant. Note that 4, has an
(Q), G)-decomposition by Lemma 5.1.6, since all p; do. We define ¢,
similarly as

T2
Z Pe

l=r1+1

Because of the definition of dg], and the fact that the action of G is

blending, the difference q; — g simplifies to

41— = Z Z pgll Xm [gnn} (x[n])

81,-.8n€G  JETL
{g11,....gnn}=[n]

~ Zzp[gl [8"]( ) |G|

8€G jel

where ~ stands for positive multiple of. Note that we have used that
p is G-invariant in the last equality. Dividing by |G| and the positive
scaling factor proves the statement, since the scaling can be absorbed in
the local polynomials. The last statement of the theorem follows from
the statement in Lemma 5.1.5 for even n. O

Example 5.1.7 (The minus sign in the single and double edge)

The minus sign in the decomposition of Theorem 5.1.7 is necessary
(as long as we do not switch to complex coefficients). For example, the
polynomial p = x? + y? is Cp-invariant, and since C, is blending on the
single edge Ay, there exists an (A, C;)-decomposition for p with this
additional minus sign (by Theorem 5.1.7):

p=x"+y"=pi1(x) - p1(y) — p2(x) - p2(y)

where 1 1

) =— —(1-#).
But for degree reasons there cannot exist an actual (Ap, Cy)-
decomposition for p, i.e. an invariant decomposition without the addi-
tional minus sign.
On the other hand, the refinement of A, to the double edge A allows for
a free group action of C,. Hence there exists a (A, Cy)-decomposition of
p (by Theorem 5.1.2), given for example by

(14 %) and py(t) =

2
= Z Puas (x) - PBa (y)
w,p=1
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where p11(t) = 0, p12(t) = t2,p21(t) = 1 and pa»(t) = 0. This shows
that rank, ¢,)(p) = 2.

5.1.3 The invariant separable decomposition

In this section we assume that every local space of polynomials is
equipped with a convex cone C 1 c ]R[xm], i.e. a set which fulfills
xp+pBg € Cforall p,g € Candw, f > 0. Important examples of such
cones are the cone of sum-of-squares (sos) polynomials

N
Coos = {p eER[x]:p= Zq,% for some g; € R[x],N € ]N} ,
k=1
the cone of nonnegative polynomials
Con = {p € R[x] : p(a) > 0foralla € R"},

and the cone of polynomials with nonnegative coefficients'!

Concoet = P ER[X] : p = Z cax* with allcy >0
ac{l,..d}m"

For a given set of local cones C 1,...,cl" we define the global separable
cone

Coep = cMec?lg...qclh

r ) ‘
= Zp][l] . --p][-n] :r €N, p][.l] eclly cp.
=1

This is the smallest global convex cone generated by the elementary
tensors formed from the local cones. For a given group action of G on (),
we further assume that Cll = Cl87 for all g € G.12

We now define and study the invariant separable decomposition of
polynomials, i.e. decompositions which are inherently G-invariant and
where the containment in the separable cone is explicit — i.e. a positive
combination of elementary polynomials where each factor is in the local
cone.

Definition 5.1.2 (Invariant separable decomposition)

Let p € Csep. A separable (Q), G)-decomposition of p is an (Q), G)-
decomposition
= (p)
P (P P )5615'

with the restriction that

pg] e cli

foralli € [n]and B € 7.

11: In this definition, we use the notation
where

o= (ag,...,00)
is an n-tuple, with

o . K &
X i=ay o xy

12: We suppress again the canonical iso-
morphism between the local polynomial
spaces in the notation.
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The minimal cardinality of Z among all separable (), G)-decomposition
of p is called the separable (Q), G)-rank of p, denoted sep-rank ¢, ;) (p). If
p does not admit an (Q), G)-decomposition, we set

sep-rank ¢, ) (p) = .

If G is the trivial group action, we call the separable (), G)-decomposition
just separable ()-decomposition, and its minimal number terms the separable
rank, denoted sep-rank,.

We now show the existence of invariant separable decompositions with
free group actions. This follows from Theorem 5.1.2, as it can be con-
structed via positive multiples of the initial decomposition.

Theorem 5.1.8 (Invariant separable decompositions)

Let () be a connected WSC with a free group action G. Ev-
ery G-invariant polynomial p € Csep admits a separable (O, G)-
decomposition.

Proof. Let p be decomposed as in Equation (5.6) with p][i] e Cll, which is
a separable decomposition of p. Applying the construction of the proof
of Theorem 5.1.2 we obtain a separable (Q), G)-decomposition, since all

local polynomials pg] are positive multiples of p][-g 1 for g € G. Since the

local cones coincide on the orbits of G, this guarantees that p[ﬁi] ecll, o

Example 5.1.8 (Separable decomposition on the double edge)

The (A, C;)-decomposition of p = x? + y? given in Example 5.1.7 is in
fact an invariant separable decomposition with respect to the local sos
cones, proving that sep-rank , -\ (p) = ranks c,)(p) = 2.

We can now easily promote the results of Corollary 5.1.4 to the (invariant)
separable ranks. The proof is analogous.

Corollary 5.1.9 (Relation between separable ranks)

Let () be connected and G a free group action on (). Then for every
G-invariant p € P we have

sep—rank(Q,G)(p) < |G| - sep-rankq (p) < |G| -Sep-rankz,,(i’)‘

Note that an analogue of Theorem 5.1.8 for blending group actions
is not true. One reason is that, if the action is blending, we cannot
construct a decomposition using the local polynomials from the initial
tensor decomposition. This is visible in the simplest case, namely for
(A3, Cp)-decompositions, illustrated in Example 5.1.7. Another reason
is that Theorem 5.1.7 (with blending group actions) uses a difference of
two (Q, G)-decompositions, and a difference of separable elements is in
general not separable.

Finally we show that the global cone of sos polynomials Cses is strictly
larger than the cone of separable polynomials over local sos polynomials
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Csep - CS[E)]S ® tt ® Cs[g]s, i.e.

clb®- - @ Clil ¢ Coos.

In other words, there exist polynomials which admit a sos decomposition
over all variables, but cannot be written as tensor decomposition where
every term is a sos polynomial. This is even true for polynomials in
two variables x and y, as the following example shows. The example
relies on the Gram map, which will be the cornerstone of invariant sos
decompositions (Section 5.1.4). Moreover, it relies on the standard result
that the set of separable matrices is strictly smaller than the set of psd
matrices.

Example 5.1.9 (sos polynomials which are not separable)

We consider the following Gram map G between real-valued matrices
M € Mat;(R) ® Mat(R) and polynomials p € R[x, y]:

G: M pi=m(x) @m(y)' - M-m(x) @my(y)

where my(x) := (1, x)! is the monomial basis in x of degree at most 1.

It is well-known (and easy to see) that for deg .(p) < 2 we have

p € Csos if and only if there exists a psd M € Matp(R) ® Mat, (R)

with G(M) = p. Further, p € Csep if and only if there exists an M €

Matz(lR) ® Mat, (]R) that is separable13 and G (M) =p. 13: i.e. there exists a decomposition

For example, consider the matrix .

M= ; M & m?
1 .

M= 1) (@) (i = [F) (@F] = where all M are psd.

ij=0

_ O O =
oS O O o
o O OO
_ O O -

where |[®T) =0,0) + |1,1) € R? ® R? is known as an (unnormalized)
Bell state. Note that M is psd but not separable, which can easily be seen
with the positive partial transposition criterion [96, 66].1 Furthermore, 14: The positive partial transpose cri-

M is the only psd matrix representing the polynomial terion is a necessary criterion for bi-
partite states to be separable. If p €
Mat, (R) ® Mat,(IR) is separable, then
o2 is psd, where

p=1 +2xy+x2y2 =(1 +xy)2 =gG(M),

since the matrix . - A @B
p? =) Aj®B
j=1

for

o O =
O R OO
O O R O
- o o |

r
p=> Aj®B;
=1

isnot psd for any « € R\ {0}, and
G 1{p}) = {My:a €R}.

This implies that p = (1 + xy)? is sos but not separable with respect to
the local sos cones.

More generally, in order to show that a polynomial is sos but not
separable, one needs to show that every psd matrix M with G(M) = p
is not separable. This is generally a hard problem.
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5.1.4 The invariant sum-of-squares decomposition

In this section we introduce a sum-of-squares (sos) decomposition in the
(Q), G)-framework. First, notice that not every G-invariant sos polynomial
p can be decomposed into G-invariant polynomials g via p = lec\lzl qi,
as the following example shows.

Example 5.1.10 (Absence of stringent invariant sos decomposition)

Consider again p = x? + y2, which is obviously sos and C,-invariant,
i.e. invariant with respect to permuting x and y. Yet, there does not exist
a decomposition

p= Z 7 where all g are Cy-invariant.

To see this, assume the contrary. Since deg(qx) <  deg(p), each poly-
nomial can be written as gy = ayx + axy + by. Further, since p has no
constant term, we must have by = 0. But this is impossible, since the xy
coefficient of p is zero.

We term the previous definition of an invariant sos decomposition
stringent, and now introduce a more ‘relaxed’ one, which allows for
permutations among elements of the family {g;}, and which is the
correct notion as far the existence results are concerned, as we will later
show. So let G act on [n], and equip the finite index set

S=85x%x...x8,

with the induced group action

gk = (kgfll’ . 'kgfln)
for every k = (ky...,k,) € S and ¢ € G. We say that the family of
polynomials q = (gi )kes is G-invariant if
ek = 8k

forall g € G and k € S. This equation can be spelled out as

qgk(x[l],...,x[”]) = qi(x81, ., xleny,

Now, if q is G-invariant, the resulting sos polynomial

pP=> i

keS

is also G-invariant (since k — gk is a bijection on S). In Theorem 5.1.11
(i), we will prove the reverse direction, namely that every G-invariant sos
polynomial p has a G-invariant family of polynomials g.

To prove this result, we leverage a correspondence between matrices
and polynomials given by the Gram map G (similarly to Example 5.1.9).
For simplicity, we assume for the rest of this section that every local
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polynomial space uses the same number of variables, i.e.
P=Rx" o @Rx"]

[i]

where x| = (x3,00) x%) for each i € [n]. Now consider a polynomial
p € P with deg)  (p) < 2d. We can represent p via the Gram map

G: Matp(R)*" — P
M — <mn,d| M ‘mn,d>

where [m, 4) = [my(x)) ® - @ [my(x[")) and we define |my(x))
to be the monomial basis in x consisting of all monomials of degree
at most d. In other words, for indices iy, ...,i, € {0,...,d} such that
i1+...4+1i, <d, wehave

(i1, in |mg(x)) = xt - 2.
In addition, Matp (IR) is the space of real matrices of size D x D, where

D= (m;d). Note that D is also the number of monomials in m variables

of degree at most d. We say that the matrix M = Zfil M]m ®- - M][n]
is G-invariant if

N
W g o gt _
gM._E‘ 1:M]. ®-aMS =M
]:

forevery g € G, thatis, if M is invariant with respect to all permutations of
the tensor factors induced by the group action of G on [n]. This generalizes
the Gram map for multivariate polynomials without invariance [25].

Lemma 5.1.10 (Gram matrix of invariant sos polynomials)
Let p € P with deg; .(p) < 2d. The following are equivalent:
(i) pissos and G-invariant.

(ii) There exists an M € Matp (R)®" that is psd and G-invariant
such that G(M) = p.

Proof. (ii) == (i). If there exists such an M, since it is psd, it has a rank
decomposition M = 3 |o) (vi| where |vy) € (RP )®n. This gives rise
to a sos decomposition of p via G. Furthermore, since gM = M for all
g € G, we obtain

gp = p(x[gl]/m,x[gn])
= (my (xB!)|- (my (x| M [my (x8U)) - - - Jmy (x[87]))
= (my(xBM)] - (my (x187)] g7 M [y (x181)) - - Jmy (xI871))
=P
where the second equality holds by the G-invariance of M, and the last

equality by the commutativity of polynomial multiplication.

(i) = (ii). Assume that p = SN, q? is G-invariant. Define [v;) €
(]RD)®n such that gx = (vg | m,, 4) defines a psd matrix M’ = lec\lzl vkvi
with G(M') = p, where M’ need not be G-invariant. By the G-invariance

87
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of p, we additionally have that G(gM') = p for every ¢ € G. Defining
M as the average

1
M= 15 2 sM
[P

we obtain a G-invariant and psd matrix M. By linearity of the Gram map,
we have that G(M) = p. O

Remark 5.1.1 (Gram matrix of invariant separable polynomials)

A similar version of Lemma 5.1.10 relates invariant separable poly-
nomials .
pe Csep :Cs[o}s®"'®cs[g}s

with invariant separable matrices M. The only difference is that the
vectors |vg) should be elementary tensors factors.

In order to state and prove the main result of this section (Theorem
5.1.11), it only remains to define sos (Q, G)-decompositions—this is the
non-stringent version advocated above.

Definition 5.1.3 (Invariant sos decompositions)

Let G be a group action on the WSC (), and let

4= (9x)kes
be a family of polynomials.

(i) An (Q, G)-decomposition of the family q is a decomposition

=2 Ay, )i, ()

ael’

for every k € S, where
a0 5 € Rix]

and

g0 5 (1) = g1, ()

for every i € [n], B € I7i, ¢ € G and k € S. The smallest
cardinality of Z among all (Q), G)-decompositions is called the
(Q, G)-rank of q, denoted rankq ) (q)-

(ii) Ansos (Q, G)-decomposition of p € P is given by a sos decom-
position into a family q

P=>_dq

keS

together with an (0, G)-decomposition of g. The minimal
(Q), G)-rank among all such sos decompositions is called the
sos (€, G)-rank of p, denoted sos-rankq g)(p). If G is the
trivial group action, we call the sos (), G)-decomposition just
sos ()-decomposition and denote its rank by sos-rankgq.
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We are now ready to prove the main result on the existence of invariant
sos polynomials:

Every G-invariant sos polynomial p has a G-invariant family ¢ (Theorem
5.1.11 (i)), and q has an (Q), G)-decomposition if G is a free group action
on (2 (Theorem 5.1.11 (ii)). The idea of the proof of Theorem 5.1.11 (i) is to
define g as the square root of p, and show that this square root is also
G-invariant. Some ideas of the proof are illustrated in Example 5.1.11.

Theorem 5.1.11 (Invariant sos decompositions)
Let () be a connected WSC with a free group action G. Furthermore,
let p € P be a G-invariant sos polynomial.

(i) There exists a G-invariant family of polynomials q = (4 )kes

such that
P=> 4
keS

Moreover, every element gy admits a decomposition in which
the local polynomials at site i only depend on k;, namely

A= iy ) - g ().
JET

(i) The invariant family q admits an (2, G)-decomposition.

Proof. (i) We denote the monomial x = (xq,...,X;) with exponent
w=(a1,...,0n) by x* = x]1 - x52 - xp". Without loss of generality we
can assume that deg) . (p) < 2d. Define

S;={keN": |k <d}

and § = &7 X - -+ X §;;. Note that S can be identified with the set of
monomials in P of local degree at most d via the correspondence

S Py kXK= (xm)k1 e (x[”])kn .

Note also that the permutations of variables x[1 = x[87! coincide with
the group action of G on S, since

(x[gu)kl - (x[grq)k" _ (xm)kg*l . (xw)kg*" . (59

Since p is G-invariant and sos, by Lemma 5.1.10 there exists a psd and
G-invariant matrix M such that G(M) = p. Now let B be the (unique)
psd square root of M, i.e. M = B2. Since M is a psd matrix, B admits a
polynomial expression in M and hence B is also G-invariant. Define the
polynomials gy as

gk =Y Brw (xm)ka (x[”]>

k'eS

k/

n

Note that in [55, Theorem 5.3], the au-
thors prove the existence of so-called
semi-symmetric sos decompositions for
general representations of finite groups,
by using Schur’s lemma on the Gram
matrix. Theorem 5.1.11 (i) is weaker than
this statement, as it only considers group
actions that permute the tensor product
spaces, but gives an elementary proof.
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for k € S. The family q = (gx )xes is G-invariant, since

=3 nggk,(xfﬂ)ké*h ...(qu)k;—u
k'eS
- Z Be (x[l])ka . (x["])k;‘ — dei

kK'eS

where we have used the fact that By jv = Bgy o1’ for every g € G (which
is just the G-invariance of B), together with Equation (5.9) and bijectivity
of the map k’/ — g¢k'’. In addition,

Z L]12< = <mn,d| B'B |mn,d> = g(M) =P
keS

since B'B = B> = M. Moreover, B admits a tensor decomposition
By = (B[l]) (B[”]> .
kk Z 1k kg I T kK,
jeL
Using the definition of gy leads to the last statement of (i).

(ii) The proof is similar to that of Theorem 5.1.2. Start with decompositions

Bc= > a6 g ()
jeT

forevery k = (kq,...,k,) € S. From the construction of Theorem 5.1.1
it follows that every polynomial gy has a decomposition of the form

weT¥

where F is the set of facets of (). We now construct a decomposition
for every gy which additionally satisfies the symmetry conditions of
Definition 5.1.3 (i). Since G is free, by Lemma 5.1.3, there exists a G-linear
map z : F — G. We consider the new index set 7 := Z x G, together
with the projection maps 771 : Z — Z and 71, : Z — G. For each i € [n]

and B € Z7i we define the following local polynomials

ir

. , (s7] iy . _ (g7}
#Awy:{?ﬂmw“):32ﬁ (¢ 2,

Similarly to the discussion in the proof of Theorem 5.1.2 we see that
(g1] (X[i]) _ (x[i])
Trisp Tiip

and .
G| - g = Z~ ql[q],&h (x1y.. .ql[(”n],&‘n (x")
rel”
holds for every k € S. But this implies the existence of an (), G)-
decomposition of q. O

From Theorem 5.1.11 the following statement immediately follows:
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Corollary 5.1.12 (sos polynomials with free group action)

Let ) be a connected WSC with a free group action from G. Then ev-
ery sos and G-invariant p € P admits an sos (), G)-decomposition.

We end this section with an explicit example of an invariant sos decom-
position.

Example 5.1.11 (Invariant sos decompositions)

Consider again the polynomial from Example 5.1.3,
p=x"+y*+4(1+xy)?%

which is sos and invariant with respect to the permutation of x and y.

We have already seen that rank( AG) (p) =2. By a similar argument as in Example
To obtain a sos (A, Cp)-decomposition, we follow the proof of Theorem 519, it can be shown that p is not sepa-
5.1.11. We obtain S = {0,1} x {0,1} with G = C, permuting the entries rable with respect to the local sos cones.
of the tuples, and obtain a C,-invariant sos decomposition of p via the

following family of polynomials:

00 = A1) = V2(1+xy), qo1 =Y 4a0 =X

On the double edge A we obtain an (A, C;)-decomposition of the family
via the following family of polynomials

V2t L0
) _ vt o 2 _ [t
do = 1 0 0|, 9 =1

0 0 O

0 0 0 ;
= vt V2 oo |, g7 =q.

0 0 V2

where the matrix notation denotes that therows areindexedbya = 1,2,3
and the columns by 8 = 1,2, 3. This shows that

sos-rank, c,)(p) < sos-rank, c,)(q) < 3.

On the single edge X;, a decomposition of g requires vectors
), |b),|c), |d) € RY of length v/2, with |a), |b), |c) pairwise orthog-
onal, |d) orthogonal to |b) and |c), and (a|d) = 1. This is provided
by

I
—~
—~

QR
S
~
+
—
&
<
~
-
SN—
2
—_
[

2
0
2

U= (e @D,

where (), denotes a vector indexed by «. Since such vectors can only be
found in dimension d > 4, we obtain

sos-ranka, c,)(p) < sos-rank(s, c,)(q) = 4.
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Note that Equation (5.10) can be seen as
a system of linear equations by taking
the logarithm on the left and the right
hand side.

We can also write p as a sum of symmetric squares:

p= <2+§xy)2+(x+y)2+ (\/ny>2.

We now reset the variables S; = S, = {1,2,3},S = 81 X S,, as well as

3 7
Q1) =2+ 5XY, Go2) =X +Y, 4@z = \/;xy,

and all other g = 0. This gives rise to the Cp-invariant family q =
(9x)kes that provides an sos decomposition of p with

sos-rank, c,)(q) < 3.

But for the single edge, there does not exist a decomposition for the
family q. This is because already g7y = x +y does not admit an
(Ap, C)-decomposition (without a minus sign). So

sos-rank,, c,)(q) = .

5.2 Inequalities and separations between the
ranks

In this section, we study rank inequalities (Section 5.2.1), provide an
upper bound for the separable rank (Section 5.2.2), and show separations
between ranks (Section 5.2.3).

5.2.1 Inequalities between ranks

In this section, we show three relations between the introduced ranks
(Proposition 5.2.2), which are similar to the statements established for
tensor decompositions in [37, Proposition 29]. For the inequality between
sos and separable decompositions we will need to assume that (Q), G) is
factorizable:

Definition 5.2.1 (Factorizable)

Let Q) be a WSC with a group action from G. We say that (), G)
is factorizable if for each finite index set Z the following system of

equations admits a solution with all CE] > 0 and Cg[gg] = CE] for all
i€n),per’,andgeG:

cEd : ca[?l]z ol =K1 foralla € 77, (5.10)
where
=~ 3g1,...,8n € Gwith g;i = iand
Ky :=|q7€ I ! l .
(7)), = w, foralli € [n]
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All examples of group actions on a weighted simplicial complex ()
considered in this paper are factorizable, as the following example
shows.

Example 5.2.1 (Factorizable group actions)

Le us now present some examples of factorizable group actions:

(i) If Ky = 1 for every a € 77, then CE} = 1 solves Equation (5.10).
This in particular shows that (Q), G) is factorizable whenever the
action of G on the vertices [n] is free. In addition, this also implies
that (X,,S,) is factorizable.

(ii) Let O = A be the double edge and let G = {e, ¢} act by keeping
the vertices fixed (i.e. ei = gi = i) and flipping the facets (i.e.
ga = b, g¢b = a)!. In this situation, we have

K 1 ifa; =an
M2 2 cifaq # ao.

A solution of Equation (5.10) is given by

C[i] _ 1 rifag = ap
102 1/V2 :ifaq # ao.

Hence, (A, G) is also factorizable.

In fact, we are not aware of any non-factorizable (Q), G) structures, leading
to the following open question.

Question 5.2.1

Are there non-factorizable (), G) structures?
We are now ready to present the rank inequalities.

Proposition 5.2.2 (Rank inequalities)
Let p € P.

(i) rank(q G)(p) < sep-rank(, ) (p) for any separable cone.

(i) rank(qc)(p) < sos—rank(Q,G)(p)z.
(iii) If (Q), G) is factorizable, then

sos—rank(Q,G) (p) < Sep'fank(o,c) (P)

for the separable cone over local sos polynomials.

Proof. (i) Every separable decomposition is an unconstrained decomposi-
tion. (ii) Let ¢ = (qk)kes be a G-invariant sos-decomposition of p, with
an (Q), G)-decomposition

gk = Z~ q,[:l],ah (x[l]) .. "71[:1],«‘” (x[”])

xeTs

15: This is different from the symmet-
ric double edge of Example 2.2.4, since
here the vertices remain fixed. The usual
action on the double edge is free, and
hence factorizable as well.
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foreachk € S = S) x -+ x Sy. Defining Z := Z x Z and

pﬁﬁ/' quﬁ quf( H)
keS;

we obtain a valid (Q), G)-decomposition of p, with

rank(n,c)(p) < |Z] = IZP%,

namely
p= Z Z ‘ikl a‘ ql[q}a <x[”>---q£’ﬂ,,x‘n (x"]y . ‘71[;],“/ (x[)
keS 4 o el'f g
S S
(a))eIF !

(iii). Let p[ﬁi] e cli for Be TFiandi € [n] be local polynomials from a

separable (Q), G)-decomposition of p. So there exist sos decompositions

with Tk[l% € R[x!] (and we can clearly use the same sum length N for all
i, B). We can in addition assume without loss of generality that

7k (<) = 7 (1)

holds for all i, B, k and g. Indeed, just consider the action of G on

U iy x %

i€[n]

given by ¢ - (i, B) = (gi,¥B), and fix for every orbit precisely one
representative (i1, 81), . .., (ip, Bm)- Then choose one sos decomposition

for each pgﬁ] and use the same along its orbit. This works since we have

pg‘gg} (xlly = pg] (x[1) for all i, B by assumption.

Now since ((, G) is factorizable, we can choose some positive and
G-invariant solution (C! _of Equation (5.10). Using the above repre-
B )i

sentatives (iy, B) again, we now define

Tl () :if3g € G+ (i,B) = (gie4B0)
0 : else

where ¢ € {1,...,M}, k€ {1,...,N}and B € 775, By definition, we
have

Q%ﬂ),gﬁ( H) qugk) (x [i])/
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and hence

A((1k1) s (b k) ) Z q¢ 51/k1 [l]) " 'qEZL,kn)/a‘n (x[n])

weIF

is a valid (Q), G)-decomposition of the G-invariant family

q = (q((el’kl)""’(fn’kn)))(El-,kl-)ES

where S; = {1,..., M} x {1,..., N}. This family is also an sos decom-
position of p, since

Z 2
q((glrkl)/“'r(znzkn))
Vi: (Z,’,k,‘)GSi
=3 Kl )l () = .

[n
e

[i]

Here we have used Equation (5.10), as well as G-invariance of the C 8

and the Tk[l% O

5.2.2 An upper bound for the separable rank

We now provide an upper bound for the separable (), G)-rank with
respect to the number of local variables 11; and the polynomial’s local
degree. For simplicity, we again assume that all local polynomial spaces
use the same number of variables, m := m; = m; fori,j € [n]. Forp € P
recall that the local degree of p, denoted deg;.(p), is the smallest integer
d € N such that

pe R @ - @RXM],

where R[x], is the space of polynomials in variables x of degree at most

d.

Proposition 5.2.3 (Upper bound for separable rank)

Let p € P be separable and G-invariant, and let () be a connected
WSC with a free group action G. Then

de +m\"
sep-rank g ) (p) < |G| - ( gfgl(pzp) )
ocC

for any separable cone.

Proof. Letd = deg;..(p). Then p € Rx!V]; ® - - - @ R[x["]] . Since

an 1) - (')

for alli € [n], p is a conic combination of at most (
products with factors from the local cones by Carathéodory’s Theorem

d+m) elementary

16

16: See for example [6, Theorem 2.3].
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17: Thatis,

pT(xm,...,x[”]) >0

for xll € R™.

From the proof of Theorem 5.1.1, we obtain

n
sep-rank, (p) < (d—;m) .

The result now follows from Corollary 5.1.9. O

5.2.3 Separations

Here we will show separations between the polynomial ranks, which we
will define shortly. Throughout this section we will consider separable
decompositions only with respect to the local sos cones.

We know from Proposition 5.2.2 that the separable rank upper bounds
both the rank and sos-rank. Here we will show that a reverse inequality
is impossible: there are no functions f, g: IN — IN such that

sep—rankAz(p) < f(sos-ranky, (p))

and
sos-ranky, (p) < g(ranka,(p))

forall m € IN and polynomials p € R[x!], x| with xl} := ( gl],. " ,xi,li]).
This is called a separation between sos-rank and sep-rank, or rank and
sos-rank, respectively. We prove the separations by a reduction to matrix
factorizations of entrywise nonnegative matrices, which themselves

exhibit separations [49, 60].

For this reason, we focus on the subspace of n-quadratic forms in P
and relate it with tensors. For |T) € R” ® --- ® R" we define the
polynomial

m

pri= S (uesinl T) (xj[ll])2~~(x][.':]>2€79. (5.11)

jl/---/jn:1

There is a one-to-one correspondence between the tensor | T) and the poly-
nomial pr. In addition, entrywise nonnegativity of | T) fully characterizes
the nonnegativity and the sos property of pr:

Lemma 5.2.4 (Correspondence between tensors and polynomials)

The map
R"® - -@R" — P
IT) = pr

(where pr is given in Equation (5.11)) is linear and injective. In
addition, the following statements are equivalent:

(i) |T) is entrywise nonnegative.
(if) pr isa sos.
(iii) pr is globally nonnegative!.

Proof. Linearity and injectivity are immediate (each entry of |T) clearly
gives rise to a different monomial).
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The implications (i) == (ii) = (iii) are clear, since a nonnegative tensor
T generates a sum of squares, since every sum of squares is globally
nonnegative. For (iii) = (i) assume that |T) is not nonnegative, so there
exist ji,...,jn such that (ji,...,ju | T) < 0. Then

p(ejl""’ejn) = <]1//]11|T> <0

where e; is the jth standard vector. This shows that p is not nonnegative.
O

In order to “borrow” the separations of tensor decompositions to derive
separations of polynomial decompositions, we now show that the differ-
ent notions of positive ranks for tensors correspond to the polynomial
ranks.

Proposition 5.2.5 (Rank correspondence between tensors and poly-
nomials)

Let |T) € R"®--- ®R™ and the polynomial pr be given by
Equation (5.11).

(i) rank(q c)(T) = rank(q g)(p1)-
(ii) nn-rank( ¢)(T) = sep—rank(Q,G)(pT).
(iii) psd-rankq, ¢ (T) < sos-rankq ) (pr)
with equality if G acts freely on [n].

. . i . ) .
Proof. (i). Let the families (| Tg >)ﬁezfi providean (), G)-decomposition

of |T) as in Definition 2.3.1. Now consider the families

Pl = (‘1’ i (x[i})> _
T pez”i

where for a vector |V) € R™ the ¥ notation indicates

x) =Y (j|V)x
j=1

Itis immediate to see that these families provide an (), G)-decomposition
of pr, using the same index set Z.

Conversely, observe that every ((, G)-decomposition of pr consists
without loss of generality of local polynomials of the form

=G ()’

j=1

for certain \T’g]) € IR™. All other possible monomials will have to cancel
out in the total product and sum, and can therefore be omitted. Thus the
\TE) give rise to an (), G)-decomposition of |T), again with the same
index set 7.

The psd (Q, G)-rank and the nonneg-
ative (Q), G)-rank are defined in Sec-
tion 2.3.
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18: Note that in the following corollary
pm is a polynomial on the single edge.

Statement (ii) is proven exactly as (i), and using the fact that the local
polynomials of an sos (), G)-decomposition of pr must all be of degree

N 2
2, and thus have nonnegative coefficients at all the (x]m) .

For (iii) we start with an sos (Q), G)-decomposition of pr, where every
local polynomial q][(l ]ﬁ can (for degree reasons) be assumed to be of the

form
m

=5 61),

=1

e () (3) >

give rise to a psd (Q), G)-decomposition of |T) of the same rank as the
initial decomposition. This can easily be seen by computing the coefficient
of pr at each monomial (x][-j])2 e (x][-:}
from the sos (Q), G)-decomposition.

Now the matrices

)2, and checking that it arises

For the reverse inequality, we assume that G acts freely on [n]. We start
with a psd (Q), G)-decomposition of T, i.e.

o= 3 (), ().
1’ n’

a,n' eTF h In

. . ANt ,
where all E][.Z] are psd. Decompose E][.Z} = (B][.Z}) (Bf]) with the addi-

]
(B ) s = (B), 5

Since G acts freely on [1], we can just choose certain B]m and define the
[si]
5

tional constraint that

along the orbit by that formula. Now defining

()l
%mﬁ’(%)m%

leads to a sos (€2, G)-decomposition with sos-rank(q ) (pr) < |Z|. O

The proof of Proposition 5.2.5 (iii) does not work in reverse direction if we
do not assume that G acts freely on [n]. Assume there exists e # g € G
and i € [n] such that gi = i. Then, the construction into a symmetric

factorization EJM

(B = (B (B),

(6,6~

EJ[i]>5,ﬁ/
[i]

which is stronger than the symmetry of E ji given in a psd (Q), G)-
decomposition.

implies that

We now show that there is a separation between the ranks already for
decompositions on the single edge.'®
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Corollary 5.2.6 (Rank separations on the single edge)

Let pm € ]R[xgu,...,xw,xgz},...,x,[ﬁ]].

(i) There exists a sequence of polynomials (P )men such that
ranky, (pm) =3, sos-rankp, (pm) = 2

and
log, (m) < sep-rank,, (pm) <

(i) There exists a sequence of polynomials (pm)men such that
rankp, (pm) = 3 and”

n%g - sos-rank, (pm) = o0

Proof. (i). The Euclidean distance matrix M,, € Mat,,(R) = R" @ R"
which is defined as

(Mm)i,j =(i— j)2
satisfies?0

rankA2 (Mm> = 3, psd'rankAz(Mm) — 2,

and
nn-ranky, (M;,) = log,(m)

since all explicit examples are given as a real matrix factorization. Defining
Pm = P, and using Proposition 5.2.5 shows the statement.

(ii) is similar to (i), this time using the slack matrix of an m-gon for every
m € N2 O

These statements imply that there cannot exist functions f,g: N — IN
such that

sep-rank , (p) < f(sos-ranky, (p))
and
sos-rankp, (p) < g(ranka,(p))

holds for all m € N and all polynomials p € R[x[!,x/] with xl!/ .=
(xgl}, cee xkj ). This also holds true for polynomials of bounded degree,
since deg(pm) = 4 in the above construction.

This immediately leads to the question of whether there are separations
between the ranks of polynomials with a bounded number of variables
and no bound on the degree. In this setting there does not exist a one-to-
one correspondence between polynomials and Gram matrices (as that
of Example 5.1.9). We believe that separations will again appear in the
simplest setting and leave this question as a conjecture.

Conjecture 5.2.7

There do not exist functions f,g,h : IN — IN such that for all
p € R[x,y] (in particular, independently of the degree of p)

(i) sep-rank, (p) < f(ranka,(p))

19: Of course we have that

sos-rankp, (pm) < 0.

20: See [49, Example 5.17] for details.

21: We refer to [49, Example 5.14] for the
definition of a Slack matrix of a polyhe-
dron.
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(ii) sep-rank, (p) < g(sos-ranka,(p))
(iii) sos-ranky,(p) < h(ranky,(p))

where p is separable in (i) and (ii), and a sum of squares in (iii). The
separable rank is again meant with respect to the local sos-cones.

5.3 Conclusions and outlook

In summary, we have defined and studied several decompositions of
multivariate polynomials into local polynomials, each containing only
a subset of variables. The variables are divided into blocks, and each
local polynomial uses only one block. We describe a decomposition with
WSC ), whose vertices describe the individual blocks, and facets the
summation indices. For polynomials invariant under the permutation
of blocks of variables, we have defined and studied an invariant decom-
position. We have also defined an invariant decomposition with local
positivity conditions, specifically, with the separable and sum of squares
condition.

Specifically, we have defined invariant polynomial decompositions (Def-
inition 5.1.1) and shown that every G-invariant polynomial admits an
(Q), G)-decomposition if G acts freely on Q) (Theorem 5.1.2). Moreover,
if G is a blending group action, every G-invariant polynomial can be
written as a difference of two ((), G)-decompositions (Theorem 5.1.7). We
have also defined the separable (Q, G)-decomposition (Definition 5.1.2),
and sum of squares (), G)-decomposition (Definition 5.1.3), and have
shown that they exist if G acts freely on () (Theorem 5.1.8 and Corollary
5.1.12, respectively).

In addition, we have shown that the (), G)-rank of a polynomial can be
upper bounded in terms of its separable and sos rank, and that the sos
rank can often be upper bounded by its separable rank (Proposition 5.2.2).
In the reverse direction such inequalities cannot exist, since there exists a
sequence of polynomials with constant (2, G)-rank and a diverging sos
or separable rank (Corollary 5.2.6).

This work has left two open questions:

» Do the rank separations also hold with respect to a bounded
number of variables but unbounded degree (Conjecture 5.2.7), and
» Does there exist non-factorizable (), G) structures (Question 5.2.1)?

A more general open question concerns the full characterization of the
existence of invariant polynomial decompositions, as freeness of the
group action only provides a sufficient condition. Our investigations
indicate that it may also be necessary, but we were not able to prove it.
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Computational complexity in
semi-algebraic geometry

Computation is a concept that has existed in some form for a long period
of time. In its usual interpretation, this term refers to the process of
producing an output from a set of inputs after applying a finite number of
standard operations, for example, addition or multiplication of numbers.
In the early 20" century, many models of computation were formally
introduced, leading to the birth of computational complexity theory.

In computational complexity theory, computational procedures are mod-
eled via Turing machines. These machines reflect our intuitive notion
of computation, namely a fixed number of basic operations performed
on an input with the possibility of writing down intermediate results
on a scratchpad. The basic operations are modeled by a finite table
of transitions and the scratch pad by an infinitely long tape. Despite
their simplicity, Turing machines embody the entirety of computational
capabilities that are achievable by nature.

Turing machines have been useful to classify the resource usage of differ-
ent computational problems. This includes the following distinctions of
problems:

» Determining whether problems are decidable or undecidable —
i.e.,, whether a given problem can be solved within a finite amount

of time.
> Identifying whether a problem admits an efficient solution by a
Turing machine — 1i.e., whether the computation time scales

reasonably with the size of the input.

In Section 6.1, we introduce the basics of computational complexity,
providing a rigorous framework to answer these questions. In this
section, we introduce the concept of (non-deterministic) Turing machines
alongside the notions of (un-)decidability. Moreover, we survey well-
known examples of computational complexity classes such as polynomial-
time problems, non-deterministic polynomial-time problems as well
as recursively enumerable problems. We also review the concept of
hardness in computational complexity to lower bound computational
complexities.

In Section 6.2, we present tools from (semi-)algebraic geometry that
give rise to algorithms for problems in quantum information. Many
problems in quantum information involve an infinite amount of polyno-
mial equations or a search over an uncountable amount of values. This
includes, for example, checking membership in the set of separable states
or block-positive matrices. Semi-algebraic geometry (i.e. the study of
systems of polynomial inequalities) provides an algorithmic approach
to solve these problems in finite time. Specifically, the Tarksi—Seidenberg
theorem and Hilbert’s basis theorem allow us to construct algorithms to
solve problems that seem naively not decidable in finite time.

These tools will then be applied in the two remaining chapters of this
part:

6.1

6.1.1
6.1.2

6.1.3

6.2

Basics in computational

complexity .......... 104
Turing machines . . . ... .. 105
Decision problems and
computability . . ... ... .. 106
Computational complexity
classes . . ............ 108

Computational aspects in
semi-algebraic geometry . 113
The Tarski-Seidenberg

theorem . ............ 114
Hilbert’s basis theorem . . . . 117
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» In Chapter 7, we prove that the moment membership problem can
be decidable or undecidable for certain instance sets. Specifically, we
consider the following question: Given a matrix A, check whether

tr(A") e P

for every n € IN for specific sets P. This problem entails verifying
tr(A™) € P for the countably many cases nn € IN. Consequently, no
finite decision procedure follows directly from the problem’s defi-
nition. Nonetheless, leveraging tools from semi-algebraic geometry,
we establish that this problem is decidable for certain classes of
matrices A, such as unitary matrices. Conversely, we prove that the
same problem becomes undecidable when A is a matrix over a ring,
such as the ring of commutative or non-commutative polynomials.

» In Chapter 8, we introduce the notion of a bounded version of a
decision problem. Many undecidable problems in physics, mathe-
matics, and computer science share a common feature: They consist
of infinitely many statements over an unbounded parameter (sim-
ilar to the moment membership problem). We demonstrate that
bounding this parameter makes the problems decidable; however,
they remain NP-hard in most situations.

6.1 Basics in computational complexity

Computational complexity provides a formal framework to understand
the computational resources required to solve problems. At its core are
Turing machines, which embody our intuitive notion of computation:
Performing basic operations while utilizing a scratch pad to record
intermediate results. The adoption of Turing machines as a model of
computations stems from the Church-Turing thesis;

Every physically realizable computation can be executed by a Turing
machine.

This thesis is motivated by the equivalence to many other models of
computation, namely A-calculus, RAM machines, or cellular automata.
All of these models were found to be equivalent, i.e. if a function is
computable within one model, then it is also computable within every
other of the mentioned models [2].

Turing machines serve as representatives for real-world computation.
Furthermore, this model gives rise to several fundamental concepts,
including efficient computation and problems that are efficiently verifiable
but not necessarily efficiently disprovable.

We shall present the notion of a Turing machine. Moreover, we will review
the concept of decision problems and their computational complexity.
Specifically, we will present several families of complexity classes, in-
cluding the class of recursively enumerable problems, and the class of
non-deterministic polynomial time problems.

For a more detailed introduction to computational complexity theory, we
refer to the textbooks by Arora and Barak [2], by Papadimitriou [94], by
Sipser [115], or by Widgerson [128].
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6.1.1 Turing machines

In the following, we introduce the notion of a Turing machine, which
is the most commonly used model of computation. Turing machines
reflect the longheld intuition of computation: Certain mechanical rules
are applied to manipulate numbers, and it is allowed to use a notebook
for intermediate results. Although introduced at the beginning of the
20t century, Turing machines can be understood as a model of modern
computers, with the difference that Turing machines have no built-in
upper bound in the memory size.

A Turing machine consists of the following three parts (illustrated in
Figure 6.1):

» A tape divided into individual cells arranged adjacently. Each cell
holds a symbol from a finite set ¥, the tape alphabet. The tape
is assumed to be infinitely extendable in both the right and left
direction, serving as the computational scratchpad.

» A head that can read and write on the tape cells. It can move to the
right or to the left, one step at a time.

> A finite program equipped with an internal state register comprising
finitely many states Q. This program can interact with the head.
Conceptually, it is a finite set of instructions that depend on the
internal state and on the tape entry. The instructions involve chang-
ing the internal state, writing on the tape and moving the head
to the left or to the right. For this reason, the set of instructions
defines a function

5:9Qx%— Qxxx{L,R}, (6.1)

where ¥ is the tape alphabet and Q is the set of states.! For instance,
5(q1,51) = (g2, 52, L) indicates that if the head reads symbol s;
while in state g1, the state transitions to g, the head overwrites 51
with sp, and moves leftward.

A configuration of a Turing machine, defined by a state and a tape entry,
is called an instantaneous description of the Turing machine. Consequently,
the transition function J can be viewed as a mapping between various
configurations of the Turing machine.

A computation step of the Turing machine consists of the head reading
the current tape cell entry, resulting in a configuration (g, s), and then
applying ¢ to (g, s). In the new configuration obtained from J, the Turing
machine updates its internal state, inscribes the new symbol onto the

1: Both, £ and Q are finite sets. This
implies that J can be represented in a
finite way.

Figure 6.1: Illustration of a Turing ma-
chine consisting of an infinite tape, a
head, and a finite program. The head
can read and write on the tape and move
(depending on the instructions of the pro-
gram). The finite program is modeled by
a finite set of states and a transition func-
tion introduced in Equation (6.1).
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Deterministic

Turing machine

o —————0—0

Non-deterministic

Turing machine

N

Time

Figure 6.2: (Deterministic) Turing ma-
chines vs. non-deterministic Turing ma-
chines. Every vertex represents one in-
stantaneous description and every edge a
computational step. While the determin-
istic one has only one computation path
(since J is a function), the computation
paths of a non-deterministic one form a
tree. In this example every transition has
precisely two outcomes, and one exam-
ple of a computation path is highlighted
in orange. The number of distinct compu-
tation paths increases exponentially in
the number of computation steps. Note
that the computation can halt on certain
paths earlier than on others.

tape, and shifts its head one step left or right. Thus, each computation
step corresponds to obtaining one instantaneous description.

Turing machines encapsulate the full power of computation. In other
words, adding features does not increase the computational power. For
example, adding a second tape, a random access memory, letting J be
non-deterministic, or even a quantum device does not change the set
of problems that are computable with Turing machines (see [2, Section
1.2.2]).

Accepting and rejecting inputs

All Turing machines considered three states of particular importance:
the initial state g;, the accept state g,, and the reject state g,. The Turing
machine starts with the initial state, and the accept/reject states are meant
to partition inputs into two classes. For this purpose, we assume that the
Turing machine does nothing after reaching g, or g;.

We define a Turing machine T to halt on input x — a string initially written
on the tape — if T reaches either the state g, or the state g, after a finite
number of computation steps, starting from the initial state g;. If T arrives
at g,, we say that T accepts x (denoted T(x) = 1), whereas if it reaches
qr, we say that T rejects x (denoted T(x) = 0).

Non-deterministic Turing machines

There are extensions of Turing machines that are computationally more
efficient than standard Turing machines, yet their implementation is
not physical. One example is the so-called non-deterministic Turing ma-
chine. This allow for non-deterministic transitions. Specifically, for a
non-deterministic Turing machine, the transition

5:9x%— Qxxx{L R}

can be multi-valued, meaning that (g, x) can have multiple outcomes.
While deterministic Turing machines follow a single computational path,
non-deterministic Turing machines can explore a tree of computational
paths (refer to Figure 6.2), due to the multiple outcomes of each transition.
Non-deterministic Turing machines are believed to be more efficient
than ordinary deterministic ones; however, non-deterministic transitions
cannot be implemented physically. Another extension with a similar
behavior is the Turing machine with an additional quantum device (see
[2, Chapter 20]). These machines are also believed to be more efficient
than standard Turing machines, however, the set of computable problems
remains the same for all these models.

6.1.2 Decision problems and computability

In the following, we use the concept of Turing machines to present the
notion of computable functions and decision problems.
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For a given finite alphabet ¥, we define the Kleene star on X as
Y ={cicp...cn: neN,¢ e},
i.e. the set of strings generated by characters from .. Boolean functions
f:Xx*—{0,1}

give rise to the notion of a decision problem. Mapping a string to 1 is
interpreted as the string being accepted, and mapping it to 0 means the
string being rejected. In essence, a decision problem divides the set of
all strings L* into two categories: yes-instances, where f(x) = 1, and
no-instances, where f(x) = 0.

Alternatively, decision problems can also be defined via a language that is
defined as

L={xeX": f(x)=1} Cx"

Throughout this thesis, we will use the terms language and (decision)
problem interchangeably.

In practice, we often encounter functions whose domain is not inherently
defined by a set of strings, like over the natural numbers f : N — {0,1}.
These can still be understood as decision problems by choosing a proper
encoding of the domain. For example, the set IN can be encoded with a
binary encoding {0, 1}* by associating every string (so, ...,sn) € {0,1}*
with the natural number ;
a= Z sk2k.
k=0

Similar encodings exist for Z, Q, or Mat, (Q); however, sets like R or C
do not admit such a finite encoding, as they are uncountable. For this
purpose, instance sets are always restricted to sets that admit a finite
encoding.?

A further encodable set is the set of all Turing machines 7. Every Turing
machine can be represented in a finite way via its finite state set, its
finite tape alphabet and its transition function § which consists of a finite
number of instructions.

Let us now introduce one famous decision problem on this instance set,
the halting problem. We denote its language by Harr.

Example 6.1.1 (The halting problem)
The halting problem Hatr is a decision problem on 7 x * defined as

(T,x) € Hatr <= T halts on input x.

One of the central questions in computational complexity is whether
decision problems are computable or not. In essence: does there exist a
procedure to compute a function f : £* — {0,1}? A decision problem
given by a language L is called decidable (in short L € R for recursive), if
there exists a Turing machine T such that

xelL <<= T(x)=1.

2: A further example of a set that attains
a finite description, are the algebraic num-
bers in C, i.e. elements that arise as roots
of a polynomial. A possible finite repre-
sentation can be constructed by using a
polynomial whose root is the element of
interest.
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3: This follows from the fact that there
are uncountably many functions

f:N—{0,1},

while there are only countably many Tur-
ing machines which model decidable
functions.

This definition is meant to reflect that the
computation time is reasonably small for
every input. However, note that p can be
arbitrary in this definition, including also
Turing machines whose runtime scales
for example with |x|10%. We refer to [2,
Section 1.5] for a detailed discussion on
the philosophical importance and criti-
cism on this definition.

In plain words, T halts on every input x and accepts x if and only if x € L.
This means that there is a finite procedure that decides whether f(x) = 0
or f(x) = 1 reaching the accept or the reject state after finitely many
computation steps. While there are many problems that can be shown
to be decidable by giving an explicit description of such a computation
procedure, there are many more problems which are undecidable.> One
such problem is the halting problem [123].

Theorem 6.1.1
The Halting problem Harr is undecidable.

This statement is proven via contradiction: If there exists a procedure that
decides Hatr, this implies a logical contradiction. For a comprehensive
proof, we refer to [2, Section 1.4].

Analogous to decision problems (i.e., Boolean functions yielding two
outcomes), there exists a concept of computability for functions

g: X > Xn

We say that g is computable if there exists a Turing machine T which halts
on every input x and the outcome of the function

y=f(x)

is finally written on the tape. This notion will be an important ingredient
for reductions in Definition 6.1.4.

6.1.3 Computational complexity classes

Thus far, we have observed that decision problems fall into the categories
of decidable or undecidable. However, the decidable nature of a problem
does not guarantee practical solvability — that is, the ability to solve
the problem efficiently or within a reasonable timeframe, in practice. It
is plausible for a problem to demand an exorbitantly large number of
computation steps, even for relatively small inputs. For this purpose,
there exist further complexity classes that capture efficiently solvable
problems, namely the class of polynomial-time problems, as well as
efficiently verifiable problems (so-called NP-problems).

Polynomial-time problems

We say that a Turing machine T is polynomial-time if there exists a
polynomial p : IN — IN such that for every input x € ¥*, T halts within
p(]x|) steps, where | x| denotes the length of the string.

Definition 6.1.1 (Polynomial-time decision problems)

Let L be a language. We say that L is polynomial-time decidable (in
short L € P) if there exists a polynomial-time Turing machine T such
that

xel < T(x)=1.



6.1 Basics in computational complexity | 109

Many efficiently solvable problems are in P, for example, multiplying
matrices or finding the shortest path between two vertices on a graph.
Most of these problems have in common that the exponent in the
polynomial p is reasonably small, which makes them also efficiently
solvable in practice.

Non-deterministic polynomial-time problems

When solving a puzzle, it makes a huge difference in solving this puzzle
from scratch versus verifying if a given solution is correct. In physics
and mathematics, many problems share a similar behavior. We now
review the complexity class NP (and subsequently coNP), which precisely
captures this.

Definition 6.1.2

Let L be alanguage. We say the L is non-deterministic polynomial-
time (in short L € NP) if there exists a polynomial-time Turing
machine T and a polynomial p such that

xel << JyeXt: |y <plx]): T((xy)) =1

Here, (x,y) means that the strings x and y are merged with each other,
separated through a colon.

In simple terms, if a problem L is in the complexity class NP, it means
that for every instance where the answer is yes, there exists a short, easily
checkable proof, also called a certificate. This certificate provides evidence
that the instance indeed belongs to the set of yes-instances. Think of
it like having the solution to a puzzle —if you have the solution, it is
quick to check that it is correct. However, if the instance is a no-instance,
there is no straightforward way to certify it. In other words, there is no
quick, easily verifiable proof that the instance does not belong to the set
of yes-instances. This mirrors the situation where verifying that a puzzle
has no valid solution is challenging.

When the complement of a language L, defined as L := X* \ L, belongs
to the class NP, we say that L € coNP. This complexity class operates
similarly to NP, but it focuses on verifying no-instances, contrasting
with NP which verifies yes-instances. Namely, L € coNP if there exists a
polynomial-time Turing machine T and a polynomial p such that

xel <<= VyeX': |y <p(x]): T(xy) =1 (62)

Since yes- and no-instances are asymmetric in the definition of NP, the
complexity class coNP might be very different from NP.

There are many problems in NP that are unknown to be in P. Examples
include the 3-satisfiability problem SAT, graph problems like MaxCur,
and the 3-coloring problem (see Figure 6.3). We refer to [54] for details and
many more examples of such problems. Despite extensive investigation,
the existence of efficient algorithms for these problems remains uncertain.
In fact, the conjecture P # NP is one of the most significant unsolved
problems in computer science.

No-instance

Yes-instance

(Peterson graph)

Figure 6.3: The 3-coloring problem. Can
the vertices of a graph be colored with
three colors such that its adjacent ver-
tices have a different color? These figures
show a yes-instance and a no-instance.
The fully connected graph with four ver-
tices cannot be 3-colored since the up-
per left vertex does not admit any color
that is not used already for an adjacent
vertex. The 3-coloring problem is an NP-
complete decision problem.
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Figure 6.4: The complexity classes intro-
duced in this chapter. R is the set of decid-
able languages that corresponds to the
intersection of RE and coRE. RE-hard
and coRE-hard problems are harder than
all RE and coRE problems. A subset
of decidable problems are P, NP, and
coNP problems. In contrast to R, the set
P might be a strict subset of NP M coNP.

coRE-hard

NP-hard

An example of an NP-problem is the non-deterministic bounded Halting
problem.

Example 6.1.2

The non-deterministic bounded halting problem BNHALT is a decision
problem on 7y x N defined as

(T,n) € BNHaLr <= T halts on the empty input in 7 steps.

Here, Ty is the set of all non-deterministic Turing machines.

BNHALT is in NP because it is easy to verify if T halts within # steps
by giving the computational path as a certificate. However, it is hard to
verify that T does not halt within 7 steps since one has to check that it
does not halt on any of the exponentially many computational paths (see
Figure 6.2).

Semi-decidable problems

We now present an analog notion to NP at the level of decidable problems,
namely the set of recursively enumerable languages.

Definition 6.1.3 (Recursively enumerable)

A language L C X* is called recursively enumerable (in short L € RE)
if there exists a Turing machine T such that

xel < Jyei*:T(xy)=1

Moreover, L is called co-recursively enumerable (in short L € coRE) if
L® € RE, i.e. there exists a Turing machine T’ such that

xeL <= WweZ:T ((xy) =1



6.1 Basics in computational complexity | 111

In simple terms, for a recursively enumerable language it is possible to
verify that x is a yes-instance by checking whether there exists a finite
certificate y that verifies x via the Turing machine T. However, certifying
that x ¢ L might not be possible in finite time, since one must check
whether none of the (infinitely many) certificates verifies x. For this
purpose, RE-problems are called semi-decidable, since they can only verify
one possibility (namely x € L) in finite time.

The halting problem Hatrr is an example that is semi-decidable, but not
decidable. If (T, x) is a yes-instance of Harr, i.e. T halts on x, then there
exists a finite number 7 € IN such that T halts on x within 7 computation
steps. Note that the number n can be arbitrarily large (independent of
|x|). Using the halting time # as a certificate shows that HaLr € RE since
checking that T halts on x within # steps can be done in finite time via
using a universal Turing machine that simulates T.%

The intersection of recursively enumerable (RE) and co-recursively enu-
merable (coRE) languages coincides with the set of decidable languages,
denoted as R, i.e.

R = REMcoRE.

For a language L € RE, there is a Turing machine T; such that
xel <= JyeX:T((vy) =1

Similarly, since L € coRE, there is a Turing machine T, such that
x¢L <= 3Jyer": T ((xy)=1

Enumerating among all strings y € £* and letting T7 and T run in
parallel leads to an algorithm that halts for every input in finite time.
If x € L, then T; will accept in after finite iterations, if x ¢ L, then T,
accepts in finite time.

In Section 7.2.2, we use this observation to establish the decidability of
the moment membership problem. Specifically, we present an algorithm
to verify yes-instances in finite time and a method to verify no-instances
in finite time to construct an algorithm for the problem.

It is worth noting that a similar statement for NP and coNP is not true.
While we have
P € NP N coNP,

the inclusion is believed to be strict.

Complexity lower bounds

Mathematics, physics, and computer science are full of problems that do
not seem to have a simple solution; it is even impossible to construct an
algorithm to solve them. For this purpose, it is relevant to classify the
hardness of a decision problem. Computational complexity relies on a

many conjectures, like the famous P Z NP. This exemplifies the difficulty
of proving that an NP-language L is not in P.?

Although there is no immediate hope to solve the above conjecture, there
are techniques to classify problems that are most probably not in P,
so-called NP-hard problems. If P # NP, then the NP-hard problems are

4: We refer to [2, Section 1.3] for an elab-
orate discussion on the notion of a uni-
versal Turing machine.

5: If one finds a single example where
this is the case, this implies P # NP.
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Ly

yes no

Figure 6.5: Illustration of a reduction
R : L1 — Ly. The yes-instances in of
the first problem (i.e. elements of L) are
mapped to the yes-instance of the second
problem (i.e. elements of L), and no-
instance of the first problem are mapped
to no-instance of the second problem.
Therefore, the language L can be de-
cided with an algorithm for L, via the
reduction.

automatically not in P then these are the hardest problems among all
NP-problems.

We say that Problem B is harder than Problem A, if every algorithm for
Problem B automatically gives rise to an algorithm for Problem A. In
other words, we can embed the instances of the easier Problem A into
instances of Problem B. This is formalized by the notion of a reduction.

Definition 6.1.4

Let Li,Ly C X* be two languages. A reduction R : L1 — Ly is a
computable function
R:2* = X"

that satisfies
xel, +— R(x) € L.

If R is in addition computable in polynomial-time, then R is a
polynomial-time reduction.

Note that reductions are transitive, i.e. if there is a reduction R : L1 — L,
and a reduction Q : Ly — L3, then @ o R : L1 — L3 defines a reduction
from Lq to Lj. For this reason, if there is a reduction Ly — L, we will
denote this by L1 < L. If the reduction L1 — L, is in addition poly-time,
we denote thisby L1 <1y L.

This gives rise to the notion of NP-hard and RE-hard problems.

Definition 6.1.5
We call a problem L

» NP-hard (coNP-hard), if L’ <poly L for every language L' € NP
(L" € coNP).

» RE-hard (coRE-hard), if L’ < L for every language L' € RE
(L" € coRE).

Note that NP-hardness and coNP-hardness require polynomial-time
reductions. This is essential because only polynomial-time computations
are negligible when considering problems in these complexity classes. If a
problem L is NP-hard and in addition in NP, the problem is NP-complete.
We use a similar convention for all other complexity classes.

Many graph problems are NP-complete, for example the MaxCur prob-
lem or the 3-coloring problem of graphs (see Figure 6.3). Also, the
non-deterministic halting problem BNHarr is NP-complete; we refer to
Section 8.2 for a proof of this statement. The halting problem Harr is an
example of an RE-complete problem:

Proposition 6.1.2
The Halting problem is RE-complete.

Proof. We start by showing that Har € RE-hard. Let T be a Turing
machine that decides the RE-language L. We construct a Turing machine
T’ from T such that

» If T accepts x, then T’ halts.
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» If T rejects x, then T’ loops.

This construction can be performed by adding a finite number of addi-
tional states in T/, and shows that

xeL <= (T,x)¢€ Harr.

Harr € RE is clear by definition. O

Note that not every undecidable (i.e. L ¢ R) language is RE-hard or
coRE-hard; however, Proposition 6.1.2 implies that every RE-hard (and
every coRE-hard) problem is also undecidable.

6.2 Computational aspects in semi-algebraic
geometry

Many decision problems in physics and mathematics reduce to verifying
whether a specific set of polynomial equations or inequalities is true. For
instance, determining whether a matrix A € Mat;(Q) is psd involves
checking the infinitely many polynomial inequalities of the form

(v|Alv) >0

for every vector |v) € R®. However, taking this definition literally as an
algorithm is impossible, as it would entail verifying uncountably many
inequalities — a task that cannot be accomplished in finite time.

A similar problem appears when classifying separable matrices. A matrix
A € Mat;(C) ® Mat,(C) is separable if there exists ¥ € IN and psd

matrices A,Ef] € Psds(C) such that

A=Y alleall

a=1

Once again, deciding whether A is separable using this definition is
unfeasible as an algorithm due to the infinite range of quantified variables
involved.

In this chapter, we present two key results from (semi-)algebraic geometry
that can be leveraged to construct algorithms solving such problems.

» The Tarski—Seidenberg theorem offers a method for handling state-
ments involving polynomials and quantifiers over real numbers.
This theorem enables to develop algorithms for addressing a wide
range of problems in quantum information and beyond.

» Hilbert’s basis theorem shows that every set described by infinitely
many polynomial equations can be recovered by a finite subset of
these polynomials.

113
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Figure 6.6: Example of a semi-algebraic
set. Note that semi-algebraic sets do not
have to be open or closed. They also
do not have to be connected. Only the
boundary of these sets has to be de-
scribed via polynomials.

6.2.1 The Tarski-Seidenberg theorem

In the following, we present the Tarski-Seidenberg theorem, which provides
insights into the structure of sets X of the following form:

yeXCR" <= dJyeR":pxy) >0

where p: R" x R™ — R is a polynomial with integer coefficients. Essen-
tially, these sets are projections of sets arising via a polynomial inequality.
Naively, checking membership (i.e. whether x € X or x ¢ X) is not
doable in finite time, since one has to explore the space of parameters
y € R™ which can take uncountably many values.

However, the Tarski-Seidenberg theorem provides an algorithm to decide
membership in X. Intuitively, the Tarski-Seidenberg theorem asserts that
sets like X are semi-algebraic, meaning they can be represented by a finite
number of polynomial inequalities without any quantifiers involved.
Furthermore, these polynomials can be derived in a computable way
from the original description of X. Verifying membership in X via these
finitely many polynomial inequalities can be achieved in finite time. We
first introduce the notion of a semi-algebraic set and then present the
statement of the Tarski-Seidenberg theorem with its implications.

Definition 6.2.1

A set S C R" is called semi-algebraic if there exist polynomials
P, - -'/pk/qij: R"” - R

for every i,j € {1,...k} such that

k
S = U {a e R": pi(a) =0, gin(a) >0, ..., gix(a) >0}
i=1

An example of a semi-algebraic set is for instance

|

A semi-algebraic set can be expressed via polynomial inequalities of the
form:

N =

{(xl,xz) eR%: 1 <x%+x% <4,x Qx% orx%—l—x% <

which is illustrated in Figure 6.6.

p(a) 20, p(a) >0, p(a) =0, p(a) <0, p(a) <0

as well as Boolean combinations thereof. Each of these conditions can be
transformed into the standard form of Definition 6.2.1.

Verifying membership in a semi-algebraic set is a straightforward task.
Let
S:={aeR":q1(a) >0,...,qc(a) >0,p(a) =0}.

To check whether a belongs to S, it suffices to check
p1(a) >0,...,pk(a) >0,q1(a) =0,...,g9s(a) =0,

which can be done in finite time.
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We now consider the more complex membership problem involving semi-
algebraic sets: Checking membership in projections of semi-algebraic
sets.

Problem 6.2.1 (Membership in projections of semi-algebraic sets)

Let S C R" x R™ be a semi-algebraic set (given by polynomials
P1,---, Pk qils - - - Gik)- Moreover, let x :== (x1,...,x,) € Q". Decide
whether

xem(S)={aecR": JyeR": (ay) €S}

Here 711 denotes the projection map on the first component of the space
R" x R™. This problem is naively harder to decide since it involves a
quantifier. While sets like 771(S) may appear more general than semi-
algebraic sets, the Tarski-Seidenberg theorem reveals that 711 (S) is also
semi-algebraic. Furthermore, this theorem yields an algorithm to decide
Problem 6.2.1.

Theorem 6.2.2 (Tarski-Seidenberg theorem)
Let S C R” x R be semi-algebraic and

m:R"XR" - R": (x,y) — x

be the projection map. Then, the set 7r1(S) € R” is again semi-
algebraic. Moreover, the defining polynomials of 771 (S) can be con-
structed explicitly.

We refer to [7, Section 2] or to [19] for a proof of this statement. Theo-
rem 6.2.2 immediately gives rise to the following corollary.

Corollary 6.2.3
Problem 6.2.1 is decidable.

It is worth noting that the polynomials describing 771 (S) are generally
more complex than those describing S. Consequently, the computational
complexity of deciding membership in 711 (S) surpasses that of NP.

Further note that a similar decision procedure applies to membership
problems involving the all-quantifier instead of the existential quantifier.
This follows from the fact that complements of semi-algebraic sets
are again semi-algebraic. Specifically, Theorem 6.2.2 implies that the
statement, given x € Q", decide whether

VyeQ": (x,y) €S

is decidable.

We now present some examples where Theorem 6.2.2 can be applied.

Example 6.2.1 (The set of psd matrices is semi-algebraic)
A matrix A € Mat,(R) is psd, if it satisfies

Vo) e R®: p(v,A) = (v|Alv) >0,
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A principal minor M of a matrix A €
Mat;(R) is, given a sequence

1<i1<i2<...<ik<5,
the matrix

M= (Ail/)i,j:il,,..,ik :

There are 2° — 1 principal minors of an
$ X s matrix.

6: The definition of semi-algebraic sets
over C can be understood by taking real
and imaginary part separately, using
C=R2%

where p is a polynomial expression in the entries of |v) and A.

By Theorem 6.2.2, it follows that the set of psd matrices Psds(R) is
semi-algebraic.

There are also explicit polynomial descriptions of Psds(R) known. For
example, the set of psd matrices can be characterized as follows [65,
Theorem 7.2.5]:

A € Psds(R) < det(M) > 0 for the 2° — 1 principal minors M of A.

Example 6.2.2 (The set of separable states is decidable)
A matrix A € Mat;(C) ® Mats(C) is separable if there exists ¥ € IN and
psd matrices A,[Xl] € Psds(C) such that

A=Y alleall. 63)

a=1

Note that 7 can be upper bounded by s* by the Carathéodory theorem
since the dimension of the matrix space is s* and the set of separable
matrices is a convex cone generated by elementary tensors consisting of
psd matrices.

But this shows that Sep, ((C) C Mats (C)®? is semi-algebraic by The-
orem 6.2.2 since it is a projection of a set generated by polynomial
equations (namely Equation (6.3)).6

Note that no simple explicit polynomial description for separable
states is known. Consequently, applying the construction of the Tarski—
Seidenberg theorem to the set of separable states becomes necessary:.
However, this approach is not efficient in practice.

Alternatively, one can employ hierarchies of semidefinite programs [44]
to determine membership in Sep, ,(C).

Example 6.2.3 (Membership in the set of nonnegative polynomials is
decidable)

We now consider the set N' C R[x3, ..., x,]; defined as

N = {p €R[xy,...,x4)y: Va e R" : p(a) > 0}.

where R[x1, ..., X,y is the space of polynomials with degree at most d.
In the following, we associate ]R[xl, e, xn]d with the coordinate space
IR¥, i.e. every entry corresponds to a coefficient of a different monomial.
In this sense, N is a semi-algebraic, as it can be written as a quantified
formula with a polynomial inequality.

This implies that deciding whether p is nonnegative on IR"” is decidable.

Deciding statements in first-order logic

Theorem 6.2.2 allows us to even decide more general statements, more
precisely, statements in first-order logic. A statement ¢ in first-order logic
is defined by a set of polynomials py,...,p, : R" — R in n variables
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together with quantifiers on all variables, i.e.

¢ = Qix1: Qoxp: -+ Quxy: By, ..., xp)

where Q; € {3,V} is a quantifier and where B(xy, ..., x,) is a Boolean
expression of polynomial inequalities, consisting of conjunctions and
disjunctions of statements:

p(a) 2 0,p(a) >0,p(a) =0,p(a) <0,p(a) <O.

Corollary 6.2.4 (Tarski-Seidenberg quantifier elimination)

Statements in first-order logic are decidable. Moreover, for every
formula in first-order logic, there exists a quantifier-free formula ¢
in first-order logic such that ¢ = 1.
Proof. First note that
{(x1,...,xn) € R": B(x1,...,xy) is true}

is semi-algebraic. Iteratively applying Theorem 6.2.2 to all variables
shows the statement. O

6.2.2 Hilbert’s basis theorem

In the following, we present Hilbert’s basis theorem and its computational
consequences. We start by introducing the notion of algebraic varieties.

Definition 6.2.2

A set V C R" is called an algebraic variety if there exists a subset’
P C Rxy,..., x| such that

V={aeR": f(a) =0forall f € P}.

Let (f;)ieN be a recursively enumerable sequence® of polynomials in 1
variables generating the algebraic variety

V((f,-)ieN) ={aeR": fi(ay,...,ay) = Oforalli € N}

We consider now the following decision problem:

Problem 6.2.5

Given a recursively enumerable sequence of polynomials (f;);cN,
decide the following statement:

Vx € V((fi)ie]N)i p(x) = 0. (6.4)

Note that there is no obvious way to verify both yes- and no-instances.

We will now present Hilbert's basis theorem that will show that Problem
6.2.5is in RE, i.e. the problem is semi-decidable.

7: This set does not have to be finite.

8: A sequence is called recursively enu-
merable if there exists a Turing machine
that computes the first 7 sequence ele-
ments in finite time for every n.
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9: Hilbert’s basis theorem is usually
stated as follows: every ideal I C
R(x1,...,xy] is finitely generated. The
ideal in our formulation is the set of
polynomials that generate the algebraic
variety and the finitely many generators
of V correspond to the generators of the
ideal.

Theorem 6.2.6 (Hilbert’s basis theorem)

Let V be an algebraic variety generated by S C R[xy, ... xy].
Then there exist finitely many polynomials fy, ..., fx € S such that

V={xeR" fi(x) =...= fi(x) = 0}.

For a proof, we refer to [ ].? Note that in contrast to the Tarski—
Seidenberg Theorem (Theorem 6.2.2) there is no constructive way to
obtain the polynomials fi,..., fi or the upper bound k. However, if
(fi)ien is a sequence of polynomials generating V, then Theorem 6.2.6
shows that there exists N € IN such that

V={xeR" fi(x) = fo(x) = ... = fn(x) = 0}.

This allows us to verify yes-instances of Equation (6.4) in finite time via
the following algorithm:

(i) Consider the algebraic variety
VN ={xeR": fi(x)=... = fn(x) =0}.
(ii) Decide the following statement in first-order logic:
Vx € Vy: p(x) > 0. (6.5)

If Equation (6.5) is true, halt and accept the input.
If Equation (6.5) if false, increment N to N + 1.

Due to Theorem 6.2.6, for every yes-instance, there exists N € IN such
that Equation (6.5) holds true. Therefore, the algorithm eventually halts
for yes-instances.

In simpler terms, this algorithm leverages the decidability of statements
in first-order logic to assess the truth of the statement:

Vx € V(fl,...,fN): p(x) >0

for fixed N. If the statement holds true, then we can infer that
vx € V((fiien): p(x) > 0

since V (( fi)ieIN) C V(f1,...,fn). Conversely, if the statement is false,

then we increment N by one and repeat the procedure. According to
Theorem 6.2.6, there exists a value k such that

V(fi,-- - fr) = V((fi)ieN)-

Therefore, if the sequence is a yes-instance, then the algorithm also halts
at N =k.

Note that this procedure cannot be used to verify no-instances because it
is unclear what the number k is. It might be the case that determining k
is undecidable.



Positivity of matrix moments

Some problems may look very innocent yet be formally very difficult —
perhaps uncomputable —or even worse, their computability may be
unknown. Skolem’s problem exemplifies this uncertainty, focusing on
the behavior of linear recurrence sequence (LRS), where each term in
the sequence is generated linearly from its predecessors. Examples
of LRS include well-known sequences like the Fibonacci sequence or
those derived from discretizing differential equations. Despite their
simplicity, LRS are fundamental in various mathematical and computer
science domains, notably in generating pseudo-random numbers [120],
describing the dynamics of cellular automata [82], and many other
applications [47].

More specifically, an LRS of order s is given by
Up = A1lp_1 + A2Up—2 + -+ + AsUp—s

whereay, ..., as € R are fixed elements in a ring R, usually commutative.
Together with initial values uq,...,us € R, this gives rise to a full
sequence (i, )yeN in R. While several important examples of LRS are
over the ring R = Z, many interesting examples are also defined over
other rings. For example, the Chebyshev polynomials are defined via the
LRS

Tu(x) =2x - Ty—1(x) — Ty—2(x) with Tj(x) := xand Tp(x) =1

over the commutative ring Z[x] of univariate polynomials.

Skolem’s problem is a long-standing open question concerning LRS over
Z [93]. It asks whether an algorithm exists that decides if an LRS attains
the value 0 for some 1 € IN. While partial solutions to Skolem’s problem
are known, implying decidability for order s < 4 [122, 125], they do not
apply to recurrences of order five or more. A modification of Skolem’s
problem is the positivity problem for LRS. Instead of asking whether the
LRS is non-zero, it asks whether an LRS stays non-negative. In this case
it is also unclear whether an algorithm exists that decides the positivity
problem, as decidability is proven only for s < 5[92, 91].

Examples for LRS are moment sequences, in which we have
u, = tr(A"),

or generalized moment sequences, in which
iy = p(A")

for a given matrix A € Mat;(R) and a linear functional ¢ on Mats(R).
Over a commutative ring R, such generalized moment sequences are as
expressive as LRS, i.e. every LRS can be expressed as a moment sequence
and vice versa. For this reason, decidability results for generalized
moment sequences translate to decidability results for Skolem’s problem
and the positivity problem.

This chapter is based on [42] and Section
6 of [39].
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Table 7.1: For which instance sets is the
(generalized) moment membership prob-
lem decidable or undecidable? This table
summarizes the results of this paper.

Decidable cases

Undecidable cases

Unitary and Orthogonal matrices Comm. polynomials Z[x, . .., x4]
(Section 7.2.2) (Section 7.3.1)
Dominant or real eigenvalue matrices | Non-comm. polynomials Z(z, ...,z4)

(Section 7.2.3)

(Section 7.3.2)

In this paper, we study the decidability of the moment membership
problem. That is, we consider the problem: For an s X s matrix A, decide
whether

tr(A") e P VnelN

where P is a fixed set. This set usually contains elements that are positive
in some sense, so we call the problem also the moment positivity problem.
Most of our results also hold for generalized moments of the form ¢(A")
as above.

One decisive factor in the complexity of the problem is the instance set
D of the matrices, which allows us to distinguish between our two main
results:

» We restrict the instance set D C Mat,(Z) and prove decidability
of the problem for a large subclass of integer matrices.

» We enlarge the instance set Mat;(Z) C D and prove that the
problem is undecidable for matrices whose entries are elements of
certain unital rings R, for certain P C k.

Contributions: Specifically, we determine the complexity of the mo-
ment membership problem in the following cases (see Table 7.1):

» Decidability: The moment positivity problem is decidable for
orthogonal matrices (Theorem 7.2.3), unitary matrices (Corol-
lary 7.2.5), and matrices with a unique dominant eigenvalue or
only real eigenvalues (Theorem 7.2.7). It follows that the positivity
problem is decidable for simple unitary LRS, i.e. LRS whose char-
acteristic polynomial only has simple roots of modulus 1, as well
as for LRS whose characteristic polynomial has a unique dominant
root, or only real roots.

» Undecidability: The generalized problem is undecidable for the
ring of multivariate commutative polynomials (Theorem 7.3.2) as
well as for non-commutative polynomials, where P is the set of
polynomials with nonnegative coefficients (Theorem 7.3.6). This
implies that the corresponding positivity problem for LRS over
commutative polynomials is undecidable.

> Free Pélya’s Theorem: As a side result, we prove a free version of
Pélya’s theorem (Theorem 7.3.5). We show that a non-commutative
polynomial has nonnegative coefficients if and only if it is entrywise
nonnegative on the set of entrywise nonnegative matrices.

This paper is structured as follows. In Section 7.1 we introduce the
problem statement and show the relation of moment problems to LRS. In
Section 7.2 we present cases in which the moment problem is decidable.
This includes a review of known results (Section 7.2.1), the decidability for
orthogonal and unitary matrices (Section 7.2.2), and the decidability for
matrices with unique largest eigenvalues or only real roots (Section 7.2.3).



In Section 7.3, we present examples of commutative and non-commutative
rings where the moment problem is undecidable, as well as a non-
commutative version of Pélya’s Theorem. Moreover, we present a related
undecidable problem on commutative polynomials, from [39].

7.1 Problem statement

Let R be a unital ring, and let A € Mat;(R) be an s X s square matrix
with entries from R. For n > 0 the n'" moment of A is defined as

un(A) :=tr (A")

where tr denotes the usual trace of a matrix, i.e. the sum of its diagonal
entries. The moments of A are clearly elements from R, as for A =
(aif)i,jzl,.. . we have

7

S
Ho(A) =1g +---+1g and pu1(A)= Z“ii-
Y i=1
and forn > 2

S

D @iy Biy Wi, By
i1eeyin=1

Hn(A) =

Depending on the ring R, the moments are studied in different contexts,
as the following example shows.

Example 7.1.1

Let V be a C-vector space. Consider the tensor algebra

R:=T(V) 2=@V®'"=CEBV@(V®V)@...

m=0

‘R forms a unital ring with tensor product as multiplication. Actually, R
is an IN-graded unital C-algebra.
For A = (|ai]'>)ij € Mats(V) (which embeds into Mat, (R )), we obtain

for the moments

S

un(A) = Z

g, =1

|a“1/“2> ® |a“2/“3> - |a“nflﬂxn> ® |a04n,“1> ’ (71)

where the 7' moment is homogeneous of degree 7 in R. The expression
in Equation (7.1) corresponds to the translational invariant matrix product
state introduced in Section 2.3.1, where s corresponds to the (0, Cy)-
rank of y, (A).

Now assume that R is also equipped with a subset P C R. In our
results and applications, this will always be a set of elements that are
positive in some sense. Further D C Mats(R) will be the set containing
all instances of our decision problem. The general decision problem that
we will address in this paper is the following:

7.1 Problem statement 121

A unital ring 'R is an algebraic structure
that generalizes the notion of a field.
Specifically, multiplication needs not to
be commutative and inverses do not have
to exist. It consists of the binary opera-
tions + and -, that satisfy the following:

» (R,+) forms an abelian group

» (R,-) is a monoid, i.e. it is as-
sociative and it contains a multi-
plicative identity.

We denote the multiplicative identity by
1%.
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Problem 7.1.1 (Moment Positivity Problem)

Let s, P, D be fixed as above. For A € D decide whether all moments
Un(A) belong to P.

Note that D, P, s are fixed in our formulation of the decision problem.
We are thus looking for an algorithm (tailored to R, P, s and D) that
upon an input of any instance A € D stops after a finite time, and returns
yes if all moments of A belong to P, and no if at least one moment of A
does not belong to P. If such an algorithm exist, we call the moments
membership problem decidable, otherwise we call it undecidable.

Note that if the ring operations are computable and membership of single
elements in P is decidable, the moments membership problem is clearly
semi-decidable in the following sense. Given A € Mat;(R ), we simply
compute higher and higher moments of A, and check membership in
P. If some moment does rnot belong to P, we will know after a finite
time. However, this algorithm runs forever in case that all moments do
belong to P. So the hard part of the problem is certifying membership
of all moments in P. We will make use of the semi-decidability in
Theorem 7.2.3.

7.1.1 Relation to the membership problem for linear
recurrence sequences

In the following, we review the relation of the moment problem with the
positivity problem for linear recurrence sequences. An LRS (1) yeN €
RN is a sequence whose elements are related to each other linearly, i.e.

Uy =01 Up—1+ a2 Up2+ a5 Up—s (7.2)

for all n > s. We call s the order of the recurrence relation. The positivity
problem for LRS is the following;:

Problem 7.1.2 (Positivitiy for LRS)

Given an LRS as in Equation (7.2) with parameters a;,...,as € R
and initial values uq,...,us € R, decide whether u,, € P for all
n € IN.

We start with the (well-known) observation that every generalized mo-
ment sequence is an LRS, if R is commutative.

Lemma 7.1.3 (Moment sequences are LRS)

Let R be a commutative unital ring, and let A € Mats(R).
Then (¢(A")),cn is an LRS of order s, for every R-linear map
¢: Mats(R) — R.

Proof. Letp(x) = x° —a;x*~! — - - - — a5 be the characteristic polynomial

of the matrix A. By the Cayley—Hamilton theorem for commutative rings
(see for example [79, Chapter XIV.3]), we have that

A= AT 4 A2 4] (7.3)



and therefore
An — ﬂ]Anil _i_aZAnfz_._ . _i_aSAnfS

for all n > s. Applying ¢ proves the statement. O

It is unclear whether a similar statement to Lemma 7.1.3 is true for non-
commutative rings. While there exist versions of the Cayley—Hamilton
theorem for non-commutative rings (see for example [61, 119]), they
cannot be applied to obtain an equation similar to Equation (7.3).

The next observation states that LRS are equivalent to generalized moment
sequences as introduced above. It can also be found in [92]:

Lemma 7.1.4 (LRS are moment sequences)

Let (uy)nen be a sequence in a commutative unital ring R. Then
the following are equivalent:

(i) (4n)nen is an LRS of order s.
(ii) There is a matrix A € Mats(R) and two vectors |v) , |w) € R®
such that u, = (v| A" ° |w) foralln > s.

Proof. For (i) = (ii) assume that the recurrence is given by
Uy = A Uy—1 + ApUp—2 + - - + AsUp—s.

Using the companion matrix

we have that u, = (v| A"~ |w) where |v) = (us,us_1,...,u1)" and
w) = (1,0,...,0)".

The proof of (ii) = (i) is analogous to Lemma 7.1.3, by replacing tr by the
function A — (v| A |w). Note that the recurrence starts to hold only for
n > 2s, but for our purposes this is irrelevant. O

7.2 Decidable cases

In the following we present cases in which the moment membership prob-
lem is decidable. This includes known results for small s (Section 7.2.1),
the moment positivity problem for unitary and orthogonal matrices
(Section 7.2.2), and for matrices with a unique largest eigenvalue or only
real eigenvalues (Section 7.2.3). Throughout this section we will always
choose P = R>.

7.2 Decidable cases
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7.2.1 Known results: small order

We first review known results on the decidability of the moment positivity
problem. The known results are all about LRS, in view of Lemma 7.1.3
they immediately transfer to moments.

Theorem 7.2.1

The moment positivity problem is decidable in the following cases:

(i) s <5,D = Mat;(Q).
(i) s <9,D C Mat,(Q) is the set of matrices with simple eigen-
values.

The proof of (i) is contained in [92], the proof of (ii) goes back to [91].
Decidability for other values of s is unknown.

The positivity problem of LRS is closely related to Skolem’s Problem which
asks if some sequence element equals 0. The best result in this direction is
that Skolem’s Problem is NP-hard [16]. The decidability of the positivity
problem implies decidability of Skolem’s Problem. This follows for an
integer LRS because u,, # 0 if and only if u2 — 1 > 0. If (u,),en is an
LRS of order s, then u% — 1is an LRS of order s2. Moreover, since Skolem’s
Problem is NP-hard, the positivity problem is NP-hard as well.

7.2.2 Orthogonal and unitary matrices

We now show that the moment positivity problem for orthogonal (Theo-
rem 7.2.3) and unitary matrices (Corollary 7.2.5) is decidable. The proof
strategy is very similar to [15].

We say that a set X C IR is algebraic if there are polynomials
p1,-- pnt R" = R

such that
X={x €R": pi(x) = - = pu(x) = O},

In this case, we call X the algebraic variety defined by py, ..., ps, and
write X = V(p1,...,pn). Even if the set of defining polynomials is
infinite, there always exists a finite choice of polynomials defining the
same algebraic variety, by Hilbert’s basis theorem. Since we work over IR,
we can even reduce to a single polynomial, by taking the sum of squares
of the defining polynomials.

For matrices A1, ..., Aj € Mats(R), let
<A1,A2,...,Ad> = {Ak1 "'Ak[: f e NN, kl,...,kg = 1,...,d}

be the semigroup generated by A, ..., A;. We denote by (A1, ..., Ay)
the topological closure inside Mat;(R) with respect to the Euclidean

topology.

Lemma 7.2.2

Let Ay,...,A; € Os(Q) be orthogonal s x s matrices with ratio-



nal entries. Then G := (Ay,..., A ) is a compact algebraic group.
Moreover there is a recursively enumerable sequence of rational
polynomials (p)ren defining G inside Mat, (R).

Proof. Compactness of G is obvious. To prove that G is a group we only
have to show that A~! € G for every A € G. Consider the sequence
(Ak) keN- By compactness, there exists a converging subsequence. In
other words, for every & > 0, there exists 1, > 11 + 1 such that

|A™ — A" <&

where || - || is the operator norm. Since || A - B|| = || B|| for every matrix
B, we obtain
JATE— Al <,

This shows that A~1 € G.

Now note that every compact group G C Mats(IR) is algebraic (see for
example [88, Chapter 3, Section 4.4]). In particular, it is shown there that

G =V (R[x]%)
=Y (P e R[X]: p(Ls) =0, p(gX) = p(X) forall g € g>,
where [; is the identity matrix of size s.

Now note that if G is generated by Aj, ..., A, then the invariance only
needs to be checked w.r.t. the generators, i.e.

G =V(peRX]: p(l) =0, p(A4iX) = p(X) fori=1,...,d).

Since the conditions p(I;) = 0 and p(A;X) = p(X) are linear in the
coefficients of p, there exists a basis (py)ren of the space of solutions of
these conditions. Moreover, the coefficients of the basis vectors py can be
chosen from Q, since all conditions are rational. We now clearly have

Q:V(pk: kE]N).

The polynomials py can be computed recursively by solving the system
of linear equations over the space of polynomials with degree d, and by
increasing d iteratively. O

Note that the statement is not true anymore when replacing R by C. For
example the group

G = {em: RS [0,271)},

seen as a subset of 1 x 1 matrices, is not algebraic. However, we show
that the moment problem also generalizes to unitary matrices (see
Corollary 7.2.5).

Since R[X] is a Noetherian ring, there exists n € IN such that

g = V(pl,...,pn).

7.2 Decidable cases
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This will be an important ingredient to show the decidability of the
moment problem. Note however, that 7 can be arbitrarily large and it is
unclear whether 7 is computable or not.

Theorem 7.2.3
The moment positivity problem for D = Os(Q) is decidable.

Proof. We will present two procedures, each certifying either yes- or
no-instances in finite time. Letting these algorithms run in parallel will
result in a decision algorithm for the problem.

Certifying no-instances for A € O;(Q) is achieved by iteratively checking
whether tr(A") > 0 holds, for every n. If A is a no-instance, then this
algorithm will halt after detecting tr(A™") < 0 for the first time.

We now present an algorithm to certify yes-instances in finite time. For a
given A € O;(Q), the moment membership problem can be rephrased
as

VB € (A) : tr(B) > 0.

By the continuity of the trace, this is equivalent to

VB € (A) : tr(B) > 0. (7.4)

By Lemma 7.2.2 there exists a recursively enumerable sequence of
polynomials (py)ken and some n € IN such that

(A) =V(p1, - Pn)-

Now step k of the algorithm verifies the statement
VB e V(py,...,px): tr(B) =0 (7.5)

which is decidable by the Tarski-Seidenberg Theorem, since it is a
statement in first order logic. As soon as Equation 7.5 is true for the first
time, the algorithm halts and outputs a correct yes-answer. This will
indeed be the case after at most 7 steps, if A is a yes-instance. O

Remark 7.2.1

This statement can be generalized in two directions:

(i) By the same argument, the following problem is also decidable:
Given Ay, ... Ay € Os(Q) for a fixed matrix size s, decide if:

V¢ e INVky,... k€ {1,...,d}: tr(Akl---Aké) > 0.

Note that generalizing this decision problem to arbitrary ma-
trices makes it undecidable [36].

(if) The proof remains true if tr is replaced by any other continu-
ous function. This in particular implies that the generalized
problem

Vn e N: ¢(A") >0

is decidable.



We now generalize the result to unitary matrices, by embedding them
into orthogonal matrices of larger size. We denote by Q][i] the field of
complex numbers with rational real and imaginary parts, and we denote
the set of s X s unitary matrices with entries in Q[i] by U, (Q[i]).

Lemma 7.2.4

The map

¥: Us(QJi]) — 02(Q)

. A —B
LlA+lB»—>(B A)

is a group homomorphism. Moreover we have

tr(U) = %tr (‘I’(U) - (_IZ?IS l}))

where I; is the identity matrix of size s.

Proof. The map is well defined since ¥ (U) is orthogonal if and only if U
is unitary. The rest is immediate. O

The main results of this section are summarized in the following two
corollaries.

Corollary 7.2.5

For each s > 1, the moment positivity problem for matrices from
Us(Q[i]) is decidable.

Proof. 1t follows immediately from Lemma 7.2.4, Theorem 7.2.3 and
Remark 7.2.1 (ii). O

Corollary 7.2.6
The positivity problem is decidable for simple unitary LRS, i.e.

Up = AUy + -+ Aslp—s

with ay, . ..,as € Qi], where the roots of

1 2

p(x) =x° —mx® —apx® " — ... —a

are all simple and of modulus 1.

Proof. We choose a unitary matrix A € Us(C) whose eigenvalues are the
roots of p, and whose entries are computable numbers. For example, one
can take a diagonal matrix with the specified roots on the diagonal. We
obtain the reccurence

An:alAn—l_i_.”_'_asAn—s

for all n > s, and since the roots are all simple, p is actually the minimal
polynomial of A. So I, A, A2 ., A5 Lare linearly independent, and

7.2 Decidable cases
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we can thus find a linear functional ¢ on Mat,(C) with ¢(A?) = u; for
1=0,...,5s— 1. Now as stated in Remark 7.2.1 and Lemma 7.2.4 above,
it is decidable whether ¢(A’) > 0 holds for all 7, and since this sequence
fulfills the same recurrence and initial conditions as (u;);>1, the two
sequences coincide. 0

7.2.3 Matrices with a unique dominant eigenvalue or real
eigenvalues

In the following, we show that for matrices with a unique dominant
eigenvalue, and for matrices with only real eigenvalues, the moment
problem is decidable. Note that the idea for the case of a unique domi-
nating eigenvalue is already present in [92], but restricted to multiplicity
1 and matrices of size at most s = 5.

Theorem 7.2.7

The moment positivity problem is decidable in the following cases:

(i) R = Q, s arbitrary, and the set of instances restricted to matri-
ces with a unique dominant eigenvalue.

(i) R = Q, s arbitrary, and the set of instances restricted to matri-
ces with only real eigenvalues.

Proof. We provide algorithms that decide the moments positivity prob-
lem for the stated instance sets. Note that we can assume without loss of
generality that A € Mats(Z), by possibly multiplying the matrix with
the largest denominator of its entries.

For (i) let A € Mats(Z) have a unique dominant eigenvalue. Since A
has real entries, the non-real eigenvalues of A come in conjugate pairs.
Since there is exactly one eigenvalue A; of largest absolute value, it must
therefore be real. We let k denote its multiplicity and obtain

[n(A) =k - A7 < (s = K)[Aa]",

where A, denotes the second largest eigenvalue in absolute value. Thus
it suffices to check 1, (A) > 0 for n up to
log(s/k—1)
log(|A1]) —log(|A2])”

(ii): In this case only odd moments matter, since the even moments are
always nonnegative. If the dominant eigenvalues all have the same sign,
then we can apply (i). Otherwise, since odd powers of eigenvalues with
the same absolute values but different signs cancel out, we can reduce
the problem to a smaller matrix, where the dominant eigenvalues do
have the same sign. O

7.2.4 Further generalizations

In the following, we present a generalization of the statements in Sec-
tion 7.2.2 and Section 7.2.3. For a matrix A € Mats(IR), we denote by
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spec(A) the multi-set of all eigenvalues of A (where multiple eigenvalues
are represented by multiple elements of spec(A)). Express

spec(A) = pery(A) Upery(A) U -+ Uperg(A)

as a partition of peripheral spectra, i.e. eigenvalues of the same absolute
value, in decreasing order (i.e. per; (A) contains the dominant eigenvalues,
per, (A) the eigenvalues of second largest absolute value...). Note that
per;(A) can be empty if A has multiple eigenvalues of same absolute
value. Moreover, let

(A=Y (|§\L|)

Aeper;(A)
We define
ni(A) = { infucny i/ (4)  if peri(4) £ 0
o0 if per;(A) = 0
and

7

(A) = { SUPnen g (A):if peri(A) 0
l —00 2 if per;(A) = 0.

where p,q > 1 are arbitrary but fixed integers. So we compute the
supremum along an arithmetic progression.

Lemma 7.2.8 (Computability of #; and ;)

The following two problems are decidable:

(i) Given' A € Mat (R), c € R, decide whether 7;(A) > c. 1: To assume that the inputs attain a fi-
(i) Given A € Mat; (]R), ¢ € R, decide whether r)/l.( A) <ec. nite description, we restrict to algebraic

numbers, i.e. numbers that can be repre-
sented as roots of an integer polynomial.
This is enough for applying Lemma 7.2.8

Proof. The decision algorithms are very similar to one from the proof of i, the proof of Theorem 7.2.9.

Theorem 7.2.3. To construct an algorithm for (i), let the following two
procedures run in parallel:

(a) Evaluate ]/tgf)(A) for increasing n € IN. Halt if yg)(A) <ec.
(b) Check the statement

VB e V(p1,...,pk): tI'(B) >c

for increasing k € IN, where (py) e define the variety (U), where
U is the diagonal matrix with eigenvalues A/ |A| for A € per;(A).
Halt if the statement is true.

If A,c is a no-instance of (i), then (ii) will eventually halt; if A, c is a
yes-instance, (b) will eventually halt, for the same reason as in the proof
of Theorem 7.2.3.

The algorithm for (ii) is very similar. Let the following two procedures
run in parallel:

(a) Evaluate ],ts,z +4¢(A) for increasing n € IN. Halt, if ysz 4q(A) >c

(b) Check the statement

VB € V(plr“-rpk): tr(lqu) <c
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for increasing k € IN, where (p;) s define the group (UF), where
U is the diagonal matrix with eigenvalues A/ |A| for A € per;(A).
Halt, if the statement is true.

In we evaluate a generalized moment, so recall Remark 7.2.1 (ii). O

It is unclear whether #;(A) > c or 7;(A) = c is decidable. This is due

to the fact that we do not know whether ]/t,(j) (A) attains the infimum/-
supremum for finite 7.

Theorem 7.2.9

For a fixed parameter ¢ > 0, the moment positivity problem is
decidable for all non-zero matrices A satisfying one of the following
conditions:

(@) Fk e N:m1(A),...,1(A) 20,1341 (A) > &
(ii) Ik € N: 11(A), ..., 1 (A) <0, 741(A) < —&
(iii) 71(A) < 0.

If (ii) or (iii) are satisfied, then A is automatically a no-instance. If (i)
is satisfied, then A can be a yes or a no-instance. Moreover, each of
the above criteria is decidable.

Proof. First, checking whether A satisfies (i), (ii) or (iii) is decidable by
Lemma 7.2.8, and since there are only finitely many of these statements
to check.

To prove (i), assume that 775, 1(A) # co (the other case is trivial). Let
A; € per;(A). We have that

d d ;
= ; n Aj
n(A) = SN D (A) = A" [e—s S ( |Ail >
i=1

Lty Nl

which is positive for

" log(e) — log(sd)
~ log([Aksal) —log(|Aks])”

So we only need to check finitely many instances of the problem.

For (ii) we have that

d d .
i A
Vm(A) = E |}\i|m,‘l/l;(n)(A) < |)\k+1|m —eds E ' ( ‘ z| )
i=1

s Akl

Now there clearly exists some m of the form pn + g such that the right
hand side is negative.

For (iii) note that 71 (A) < 0 is decidable, since 771 (A) > 0 is decidable
by Lemma 7.2.8. Let 0 < 6 < —#7(A). Then there exists an increasing
sequence (1y)seN such that yﬁi)(A) < 11(A) +6 < 0 for all £. This
follows from the fact that for a unitary matrix U, the group {U": n € N}
is either finite or contains no isolated points. This follows from the fact
that if the set contains an isolated point, then all elements are isolated.
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But a compact set which contains only isolated points is finite. Hence
there exists an increasing sequence (1), such that

1
i (U) < tr(U™) <m(U) + 7

Therefore we have

d

d

i n Ai

g (4) = Y NPl A) < gl (’W‘) rored (i
i=2

i=1

)

Again there exists (o such that i, (A) <O0. O

7.3 Undecidable cases

We now present two finitely generated rings, for which the moment
membership problem is undecidable. Specifically, in Section 7.3.1 we
prove that the moment membership problem is undecidable for the ring
of commutative polynomials R = Z[xy, ..., x| if n is sufficiently large.
In Section 7.3.2, we show that the moment membership problem is also
undecidable for the space of non-commutative polynomials

R = Z<le---rzd>-

7.3.1 Commutative polynomial rings

In the following, we show that the generalized moment membership
problem for R = Z[xy,...,x,] and the cone

Peoett = {P € Z[x1,...,x,): all coefficients of p are nonnegative }

is undecidable. In particular, we consider the following problem

Problem 7.3.1

Let M € Mats(R) be a fixed matrix. For an input A € Mats;(R),
decide whether
tr(A"-M) e P

holds for all n > 1.

For generalized moments of the form A — tr(A" - M), we obtain the
following result:

Theorem 7.3.2

If s,d € N are large enough, and M is chosen suitably, then Problem
7.3.1is undecidable for R = Z[xq, ..., xz] and Poefs-

In order to prove this theorem, we present a chain of two reductions.
We start with a known undecidable problem, a version of the matrix
mortality problem:
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Proposition 7.3.3

If s and d are integers that are large enough, then the following
problem is is undecidable:
Let Aq,..., Ay € Mats(Z). Does there exist a choice of 111, . ..,14 €
N such that
n n n
Al'-AZ - AS =0,

For a proof of Proposition 7.3.3 we refer to [10]. We now present the first
reduction, that shows that a positivity problem for traces is undecid-
able.

Lemma 7.3.4

For large enough values of s and 4, and a suitable matrix N €
Mat,(Z), the following problem is undecidable: Given Ay, ..., A, €
Mat;(Z), do there exist ny, ..., n; € N with

tr(A7' - A3 --- A} - N) < 0?

Proof. We prove the statement by a reduction from Proposition 7.3.3.
First, fix the matrix

00 . (E;i®QE; 0 )
N = <0 1) +) ( g 0 g O) € Mat,(Z)®* ® Z C Matyp 1 (Z)

ij=1

where E;; = [i) (j| with |k) being the k' standard vector. For every matrix
in Mat,>  (Z) of the form

_(X®X 0
=00

S
tr(YN) =a+ Y X
ij=1

we have

For an instance Ay, ..., Ay € Mats(Z) of Proposition 7.3.3, define the
following d + 1 matrices:

Bi:<Ai%Ai (1)> fori=1,...,d

&I 0
Bd+1:<sos _1)

where I; is the identity matrix of size s.

and

Letnq,...,n; € IN such that

At AT = 0.

Choosing 14,1 = 1 we obtain
: 2
n n
tr (B -+ B N) = =14 > (A} - AfY) = —1 <0,

ij
ij=1
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Conversely, let ny,...,14;17 € N such that tr(Bj? - - - Bsfll -N) < 0.
This is clearly only possible for 14,1 odd and

s

ny ng 2 o
Z(Al '”Ad)ij_o’
ij=1
which implies A" - - - Agd =0. 0
We are now ready to prove the main result of this section.

Proof of Theorem 7.3.2. Given Ay, ..., Ay € Mats(Z), set

A

Do 20 il | ©Ai-x € Matgy(R).

i=1 \1<j<i
Moreover, define
M=p)(¢|®N
with
lp) = 1) +12) +...+s)

and N as in Lemma 7.3.4. We have that

r(A'M) = > i -tr(Ay - A

1<y <+ <in<d

= Z Cnl,...,nd . tr(A;ll . Asd . N) . x;’l . x;ld

ny+-+ng=n

.N).xil...xi

n

>1

where ¢y, n, = min{i: n; # 0}. Thus Problem 7.3.1 reduces to the
undecidable problem from Lemma 7.3.4. O

Note that since the sequence tr( A" M) is clearly an LRS (see Lemma 7.1.3),
the last result shows that positivity of LRS over R = Z[x,...,x,] is
undecidable in general.

7.3.2 Non-commutative polynomial rings

We now consider the ring R = Z(z1, ..., z4) of non-commutative poly-
nomials, and show that its moment membership problem is undecidable
for the cone of polynomials with positive coefficients. As a Z-module, a
basis of R consists of all words in the letters z1, . . ., z4, where the order
of letters does matter. Concatenation of words extends to a multiplication
making R a unital ring, where 1 corresponds to the empty word. There
is a slightly different way to define this object, namely just as the tensor
algebra
Ziz,...,zq) = T(Z%).

The equivalence of definitions is apparent when identifying a word

®m
Zk, -+ Zk,, With the element |kq, ..., ky) € (Zd) , where |r) denotes

17 %k

m

the 7-th standard basis vector in Z4.
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We equip R with two (a priori) different sets of positive elements:

Pcoeff = Z>0<Zl, ce /Zd>
={p € Z(zy,...,z4): all coefficients of p are nonnegative }

_ C VLA, Ay € Maty(Z):
Peval = {P € Z<Zl" ’ "Zd> ’ P(All- . .,Ad) € Matg(Z>0) ‘

We first show that both cones coincide, which is a free version of Pélya’s
Theorem.

Theorem 7.3.5 (Free Pélya’s Theorem)

Let p € C(z1,...,24) with m := deg(p). Then the following are
equivalent:

(i) All coefficients of p are nonnegative reals.
(ii) Forall Ay,..., Ay € Mat,,11(Z>() we have

p(Al, a0a /Ad) € Mat,, 11 (]R>0)-

In particular, Pepetf = Peval, and in the definition of P, one can
restrict £ to deg(p) + 1.

Proof. (i) = (ii) is obvious (even without the restriction on the matrix
size m + 1). For (ii) = (i) we construct matrices A, ..., A; that allow us
to isolate a single coefficient of p.

Let zg, - - - z, be a word in the letters zy, ..., z4. Forj = 1,.. ., d define

Aji= Z Eii11 € Maty1(Z>o),
i=1,...0; ki=j

where E; ; denotes the matrix (of size £ + 1) with a 1 in position (i,7) and
zeros elsewhere. For t1,...,t, € {1,...,d} we have

At] cee Atr = Z Ei,i+r € Matf-‘rl (220)'

k=t
kiy1 =1ty

kipp—1=tr

In particular, the (1, £+ 1)-entry of a product Ay, - - - Ay, is 1 if and only
ifr = ¢and (ky,...,kp) = (t1,...,tp); in all other cases it is zero. So
p(A1, ..., Ay) contains in its upper right entry precisely the coefficient
of p at the word zy, - - - zg,.

Since all words appearing in p are of length at most deg(p) = m, we
can do this procedure with matrices Aj of size at most m + 1, and thus
clearly with matrices of size exactly m + 1. O

Remark 7.3.1 (Pélya’s theorem for commutative polynomials)

Pélya’s theorem [98, 64] states that for every homogeneous polyno-



mial p € R[xq,...,x,] that is strictly positive on the d-simplex

d
Ay = {(ul,...,ad) eR?: g 20,2111-:1},

i=1

the polynomial
(x1 4 +x0)" - plx1,..., xa)

has positive coefficients, for sufficiently largen € IN. In Theorem7.3.5,
the space of nonnegative matrices takes the role of the d-simplex.
While in the commutative case we have to multiply p with an
additional polynomial, this is not the case in the free version.

We now show that for these cones, the moment membership problem is
undecidable.

Theorem 7.3.6

Let d,s > 7. Then the moment membership problem for R =
Z(z1,.--,24), Peoeti = Peval and s is undecidable. This remains
true if we restrict the instances to linear matrix polynomials, i.e.
A € Mats(Z(z1, . ..,z4)) whose entries are linear formsinzy, ..., z;.

Proof. For A = Zgzl zx Ag with Ay € Mat;(Z) we have

d

HH(A): Z tr(Akl"'Akn)‘zkl"'zk,,-
k1, kn=1

So pn(A) € Peoest means that tr(Ay, --- Ag,) > 0forall ky,... k; =
1,...,d. Undecidability of this problem was provenin [36, Lemma 3]. [

7.3.3 Commutative polynomials with an unbounded
number of variables

It is an open question whether Problem 7.3.1 remains undecidable for
commutative polynomials if the set P is specified to be sos polynomials
or to be nonnegative polynomials. In this part, we show that a certain
generalization of the problem becomes undecidable, even for sos and
nonnegative polynomials.

More specifically, we show that the invariant unconstraint (®,, C,)-
decomposition for polynomials? has no local and computable certificate
of positivity. We will reach this conclusion by proving that Problem 7.3.7
is undecidable.

S

w1’ define

Given a collection of s? polynomials in Z[x], denoted (p,,g)

S
Pn = Z Pay 2 (Xm) " Pag,z (X[z]) © Pany (X[n])- (7.6)

aqe iy =1

7.3 Undecidable cases 135

2: For the definition of (®,,Cy)-
decompositions of polynomials, we refer
to Section 2.3.1.
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We have that p, € ]R[xm, cee, x["]}. Note that the summation indices
are arranged in a circle ®;, and that the local polynomials do not
depend on the site, so p, is invariant under the cyclic group C,. The
previous expression is thus a (®,, C,)-decomposition of p,,. Moreover,
pn generalizes the moment problem in the following sense: If

x=xll =xB = =«

7

then we obtain a moment sequence
pn(x) = tr(A")

with

ps,l.(x) . Ps,s (X)

Problem 7.3.7 (Positivity of (®, C;)-decompositions)

Given positive integers m and s and a collection of polynomi-
als (pap); g1 € Z|x] (where x denotes a vector of m variables

(x1, .-, Xm)),

(@) Is py sos for all n € IN?
(b) Is pn nonnegative for all n € IN?

Theorem 7.3.8 (Undecidability of Problem 7.3.7)

Problem 7.3.7 (a) and Problem 7.3.7 (b) are undecidable. This is true
even if m, D > 7 and if the polynomials are of the form

m
Pap(X) =Y Pupj- X
j=1
with pyg; € Zforalla,f € {1,...,D}.

So there does not exist an algorithm that can decide in finite time whether
Pn is sos or nonnegative for all 1, given the local polynomials as input. We
will prove Theorem 7.3.8 by a reduction from the following undecidable
problem:

Theorem 7.3.9 (Undecidability of positivity for all system sizes [36])

Let |T,p) € Z" fora,p € {1,...,D} be a collection of vectors. For
n > 0 define

D
Ty = D Taga) ® [ Tagas) © -~ @ | Ty ) -
aq,.e =1

For m, D > 7, the following problem is undecidable:

Is |T,) nonnegative for alln € IN?



Proof of Theorem 7.3.8. Let [T, g) € Z™ be a collection of vectors for
a,B € {1,...,D}. We apply the construction from Section 5.2.3 to obtain
the collection of polynomials

m

Pap = Z <]| Ta,ﬁ> x]2
j=1

and generate the polynomials p, € Z[x,...,x["]. It is obvious that
pit,) = pn for all n, and from Lemma 5.2.4 we thus know that |T,)
is nonnegative if and only if p, is a sum of squares/nonnegative. So
decidability of Problem 7.3.7 (a) or (b) contradicts Theorem 7.3.9. O

We remark that Problem 7.3.7 remains undecidable if the input polynomi-
als are in Q[x], since multiplying all polynomials by a positive constant
does not change the positivity/sos property.

It can also be shown that a bounded version of the questions of Prob-
lem 7.3.7—i.e. where n is fixed —result in an NP-hard problem (see
Chapter 8).

7.4 Conclusion

We have studied the moment membership problem (Problem 7.1.1) for
matrices over a ring. We have shown that there is a relation to LRS for
commutative rings (Lemma 7.1.3 and Lemma 7.1.4) and that the moments
positivity problem is decidable in many cases, including unitary and
orthogonal matrices (Theorem 7.2.3 and Corollary 7.2.5) as well as
matrices with a unique dominating eigenvalue or only real eigenvalues
(Theorem 7.2.7). Finally, we have shown that the generalized moment
membership problem is undecidable over the ring of commutative and
non-commutative polynomials, where the positivity cone is given by the
set of polynomials with non-negative coefficients (Theorem 7.3.2 and
Theorem 7.3.6).

The central open question is still whether the moment membership
problem is decidable or undecidable for R = Q and P = [0, 0). In the
context of rings it would be interesting, whether it is also undecidable
for commutative polynomials for the cone of sum-of-square polynomials
or the non-negative polynomials. This might be the case since these
cones have a richer structure than that of polynomials with nonnegative
coefficients.

7.4 Conclusion
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Bounded versions of undecidable
problems

Many problems in quantum information and quantum many-body
physics are undecidable. This includes the spectral gap of physical
systems [34, 8], membership problems for quantum correlations [116,

, 70, 53, 86], properties of tensor networks [36, 72, 108], measurement
occurrence and reachability problems [46, 129], and many more [39, 48,

, 107, 51]. In addition, other problems are believed to be undecidable,
such as detecting quantum capacity [33], distillability of entanglement
[129], or tensor-stable positivity [48].

All these problems have a common theme: They ask for a property that
includes an unbounded parameter. For example, in a quantum correlation
scenario, the dimension of the shared quantum state between the two
parties may be unbounded. Similarly, properties characterizing many-
body systems, such as the spectral gap, inherently involve assertions
across arbitrarily large system sizes.

On the other hand, many problems in science, engineering, and mathe-
matics fall under the umbrella of NP-hard problems [128]. Some examples
relevant for physics are finding the ground state energy of an Ising model
[4], the training of variational quantum algorithms [14], or the quantum
separability problem [62, 56], and many more. These problems typically
concern properties where all size parameters are bounded or even fixed.
For example, the ground state energy problem concerns the minimal
energy of Hamiltonians with fixed system size.

This highlights an analogy between certain classes of problems: an un-
bounded problem tests a property for an unbounded number of occurrences
(which can be generated recursively), whereas the corresponding bounded
version tests the same property for a bounded number of situations.
This includes, for example, testing a certain property of a translational
invariant spin system for all system sizes, or up to a certain size. A com-
mon observation in this context is that bounded versions of undecidable
problems tend to be NP-hard. This insight has been noted in various
examples, as documented in [72, 17, 108], as well as discussed in [128,
Chapter 3].

Despite this analogy, the techniques used to prove NP-hardness and
undecidability often differ. While proofs of undecidability predominantly
hinge on reductions from the halting problem, the Post correspondence
problem or the Wang tiling problem, NP-hardness proofs mainly rely
on reductions from the satisfiability problem SAT, or from NP-complete
graph problems like the 3-coloring problem or MaxCur.!

In this work, we establish a relation between undecidable problems
and certain NP-hard problems. Specifically, we define the notion of a
bounded version of a problem and a method to leverage the reduction
from unbounded problems to their corresponding bounded problems
(see Figure 8.1). Subsequently, we present two versions of the halting
problem whose bounded versions are NP-hard, and use these, together
with our method, to provide simple and unified proofs of the NP-
hardness of the bounded version of the Post correspondence problem,

This chapter is based on [73].
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Figure 8.1: If Problem B is at least as
hard as Problem A (i.e. there is a re-
duction from A to B), is the bounded
version of Problem B at least as hard
as the bounded version of Problem A?
Theorem 8.1.1 gives a sufficient condi-
tion when this is the case by reusing the
reduction between their unbounded ver-
sions.

Reduction
Problem A Problem B
Definition 8.1.1 Theorem 8.1.1 Definition 8.1.1
Bounded version Bounded version
of Problem A of Problem B

the matrix mortality problem, the positivity of matrix product operators,
the reachability problem, the tiling problem, and the ground state energy
problem.

This work sheds light on the various intractability levels of problems used
in theoretical physics by highlighting the computational consequences of
bounding a parameter. More generally, this work is part of a tradition of
studying problems from a computational perspective, which has proven
extremely successful in mathematics and beyond [128]. For example, the
hardness results of the ground state energy problem rule out a tractable
solution of the ground state for a given Hamiltonian, both for unbounded
system sizes as well as a fixed system size.

8.1 Bounding

In this section, we present a definition of a bounded version of a language
(Section 8.1.1), and a method to leverage the reduction from unbounded
problems to their corresponding bounded versions (Section 8.1.2).

8.1.1 Definition of bounding

Let X be a finite alphabet and X* the set of all words generated from X.
Alanguage L C X* encodes all the yes-instances of a given problem, i.e.
x € Lif x is a yes-instance and x ¢ L if x is a no-instance.

We now define a bounded version Lp of L. For this purpose, we add a
second parameter n € IN to every yes-instance in L. This parameter acts
as an acceptance threshold for every yes-instance x € L and is encoded
in unary, i.e. for 1 € ¥, every element of L is of the form (x,1"), where
1" represents the n-fold concatenation of 1.

Definition 8.1.1 (Bounded version)
Let L C X* be a language. A language

Lg C {(x,1") | x € £*,n € N}
is called a bounded version of L if

() xeL <= ImeN:(x1") €Lp.
(i) (x,1") € Lpg == (x,1""1) € Lp.

We shall often refer to L as the unbounded language of Lp.



First, note that the definition of bounded versions relies only on the
existence of a parameter 7 in the problem that acts accordingly. While
most problems we consider in this paper are RE-complete, Definition 8.1.1
applies to languages of arbitrary complexity. Moreover, note that the
bounding parameter can also be encoded differently. For example, if the
parameter is encoded in binary, most of the bounded version would
be NEXP-hard instead of NP-hard. Finally, we remark that the process
of bounding a language can be reversed. Given a language Lp with
instances of the form (x,1") satisfying only Condition (ii), there is a
unique language L, defined via (i), which is the unbounded language of
Lp.

Many problems mentioned in the introduction contain a parameter
that gives rise to a bounded version according to Definition 8.1.1. This
parameter can be the system size for tensor network and spectral gap
problems, or the dimension of the entangled state for quantum correlation
scenarios; we will present many such examples in Section 8.3.

As an example, let us consider the halting problem Harr with its known
bounded version BHarr. The former takes instances (T, x) with a de-
scription T of a Turing machine and an input x(. An instance (T, x¢) is
accepted if and only if the Turing machine T halts on x(. The bounded
halting problem takes instances (T, x0,1™), which are accepted if and
only if the Turing machine halts on xy within n computational steps.
BHatr is indeed a bounded version according to Definition 8.1.1 since
halting of a Turing machine is equivalent to the existence of a finite
halting time, and halting within n steps implies halting within n + 1
steps.

We remark that in Definition 8.1.1 there is some freedom in the choice
of the bounding parameter. For example, for every non-decreasing,
unbounded function f : IN — NN, the language

BHarrs == {(T, x0,1") | T halts on xq in f(n) steps}

is also a bounded version of Harr. In this paper, we will focus on the
simplest versions setting f = id in all examples.

8.1.2 Leveraging reductions to the bounded case

Given the hardness of the unbounded languages, what can we say about
the bounded ones? We will now give a condition to leverage a reduction
of unbounded problems to a reduction between the corresponding
bounded problems. This results in a method to prove hardness results
of many bounded versions of undecidable problems, as we will see in
Section 8.3.

Let Lg be a bounded version of L C %*. For x € ¥*, we define the
threshold parameter

Nmin,[X] = inf{n € N : (x,1") € Lp}

8.1 Bounding
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2: We refer to Definition 6.1.4 for the
notion of polynomial-time reductions.

Theorem 8.1.1 also generalizes to other
types of reductions. For example, we
obtain an exponential-time reduction be-
tween the bounded versions when R is
considered a exponential-time reduction
and p being a strictly increasing func-
tion that can be computed in exponential
time.

We require that p is strictly increasing
instead of mere non-decreasing as we
need the equivalence of the statements
n > mand p(n) > p(m) in the proof.

where we set inf ) = co. In other words, f1in[X] denotes the minimum
value of n leading to an accepting instance of Lg. Note that

fmin[X] < o0
for every x € L due to (i) of Definition 8.1.1 and
Nmin [x] =0

if x ¢ L. Moreover, (x,1") € Lp if and only if n > npin[x] due to (ii) of
Definition 8.1.1.

Theorem 8.1.1 (Hardness of bounded versions)

Let L1, Ly C X* be two languages and R : L1 — Ly a polynomial-
time reduction? from Lq to Ly, i.e. L; <poly L2. Furthermore, let Lp;
and Lp, be bounded versions of L1 and Ly, respectively.

If there is a strictly increasing polynomial p : IN — IN such that

Mmin, L [R(¥)] < P (min,, [¥]) (8.1)

for every x € L, then

(x,1") = (R(x),1P(M) (8.2)

is a polynomial-time reduction from Lp; to Lpy, hence Ly <poly Lpo.

Proof. Since R and p are polynomial-time maps, the map in Equation
(8.2) is also polynomial-time. It remains to show that yes/no-instances
are preserved via this map. We have that (x,1") € Lp; if and only if
1 = Nmin 1, [x]. This is equivalent to

p(l’l) > P(nmin,Ll [x]) Z Nmin,L, [R(x)]

since p is a strictly increasing function. But this is again equivalent to
(R(x),17") € L. O

In words, Condition (8.1) demands that there is a polynomial that relates
thresholds of x and R (x) for all x.

Many known reductions of undecidable problems implicitly contain
such a polynomial p in their construction. This gives an almost-for-free
proof of the NP-hardness of their bounded problems. However, most of
these works do not make this polynomial explicit and therefore do not
obtain the NP-hardness results. While the theorem only assumes that
P(Nmin 1, [X]) upper bounds nmin 1, [R(x)], in all examples, we have an
equality between these expressions. In Section 8.3, we will present many
examples of this behavior.

8.2 Halting problems as root problems

The result of Theorem 8.1.1 gives only relative statements about hardness.
Specifically, it allows to construct a reduction between bounded versions
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given a reduction between their original problems. To prove NP /coNP-
hardness of bounded problems, we need root problems with bounded
versions whose complexities are already known. In this section, we review
two fundamental undecidable problems and their bounded versions,
namely two variants of the halting problem.

While Harr and BHArr are the most basic versions of halting problems,
we need variations of the halting problem that take non-deterministic
Turing machines as inputs. This is due to the fact that, while Harr is
undecidable, BHarr is in P.3 Since we want to prove NP /coNP-hardness
of bounded problems, we need root problems with a NP/coNP-hard
bounded version to start the reduction from. Therefore, we introduce
two non-deterministic versions of Harr, called NHarr and NHALTALL,
with an NP-hard and a coNP-hard bounded version, respectively.

» The problem NHarr checks the halting of a non-deterministic
Turing machine on the empty tape. An instance is given by a
description of a non-deterministic Turing machine T, which is
accepted if and only if T halts on the empty tape*. Its bounded
version BNHatr takes instances (T,1") and accepts if and only
if T halts on the empty tape in at most n steps. The unbounded
problem is RE-hard since it contains the (deterministic) halting
problem on the empty tape, which is itself RE-hard. Its bounded
version BNHArr is NP-hard.

» The problem NHaLrALL takes a description of a non-deterministic
Turing machines T as an instance, which is accepted if and only
if T halts on the empty tape along all computation paths. Its
bounded version BNHALTALL is given by instances (T,1") which
are accepted if and only if T halts on the empty tape within n
computational steps along all computation paths. The unbounded
problem is RE-hard, and the bounded version is coNP-hard.

NHatr will be the root problem to prove the hardness of the bounded
Post correspondence problem (Section 8.3.1) and the bounded matrix
mortality problem (Section 8.3.2). NHarTALL will be the root problem to
prove the hardness of the bounded Tiling problem (Section 8.3.7).

Let us now provide a detailed analysis of the two halting problems
NHatrr and NHartALL together with their bounded versions which act
as root problems. We start with the unbounded problems showing their
undecidability, and continue with their bounded version’s complexity.

Note that the inputs of NHarLt and NHALTALL are just a Turing machines
T, as we ask whether T halts on the empty tape.

Definition 8.2.1 (Non-deterministic Halting problems)

Let T be a description of a non-deterministic Turing machine.

T € NHarr  :<= T halts on the empty tape.

T halts on the empty tape

T € NHALTALL <= along all paths.

Both problems are undecidable, as the following reduction from the
halting problem Hart shows.

3: An efficient algorithm to decide
BHarr is simply letting the the Turing
machine with description T run on a
universal Turing machine. Since the sim-
ulation only needs a polynomial-time
overhead, this procedure checks whether
T halts within 7 steps after polynomially
many steps in the size of (T, xp, 1").

4: In other words, it accepts if and only
if there is a computation path such that
T halts along this path.
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5: We refer to Section 6.1.2 for the defini-
tion of the (deterministic) halting prob-
lem Hacr.

Theorem 8.2.1
NHarr and NHarTALL are RE-complete.

Proof. We prove RE-hardness only for NHaLr, as the same argument
applies to NHarrALL. To this end, we provide a reduction from Hacr.
Recall that Harr takes (T, xg) as input (where T is a description of a
deterministic Turing machine T, and xy is an input) and accepts if and
only if T halts on x(.° The reduction transforms instance (T, xp) to a
Turing machine T" = R((T, x)) which first writes xo on the tape, and
then does the same computation as T on the given input. By construction,
(T,x) € Harr if and only if T € NHarr, i.e. R is a valid reduction.

That NHarr € RE follows by taking the halting computation path as a
certificate, and a verifier that verifies the computation along the path.
That NHarTALL € RE follows by taking the halting time as a certificate,
and a verifier that verifies that the computation halts along all paths
within this halting time. O

Let us now consider the bounded versions BNHarT and BNHALTALL.
Since these problems have different complexities, we will treat them
separately.

Definition 8.2.2 (Bounded non-deterministic halting problem I)

Let T be a description of a non-deterministic Turing machine, and
n € IN.

T halts on the empty tape

(T,1") € BNHALT <= .
in 7 steps.

Theorem 8.2.2
BNHarr is NP-complete.

Proof. To show that BNHALT is NP-hard, we prove that every NP-language
L has a polynomial-time reduction to BNHatr. Since L is in NP, there
exists a non-deterministic polynomial-time Turing machine M which
accepts x within time p(|x|) if and only if x € L. We construct a non-
deterministic Turing machine Py, , that (i) writes x on the tape, (ii) does
the same computation as M on the tape with input x, and (iii) if M accepts
x along a path, Py , halts along this path, and if M rejects x along a path,
Py x loops along this path. Since step (i) needs a polynomial number
q(]x|) steps, and step (iii) needs a constant number k of steps, we have
that x € L if and only if

(Ppp .y, 193D +,4P(X)y ¢ BNHaLT.

Completeness follows from Definition 6.1.2 by choosing the halting
computation path as a certificate, and a polynomial-time verifier which
verifies the computation along this path. O
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Similarly, we define the problem BNHALTALL as the language accepting
the instance (T,1") if and only if T halts on the empty tape along all
computation paths in at most 7 steps.

Definition 8.2.3 (Bounded non-deterministic halting problem II)

Let T be a description of a non-deterministic Turing machine T, and
n € IN.

T halts on the empty tape

n =
(T,1%) € BNHawrAwr along all paths in 7 steps.

While NHarr and NHALTALL are in the same complexity class, their
bounded versions are in different ones.

Theorem 8.2.3
BNHALTALL is coNP-complete.

Proof. The hardness proof is very similar to Theorem 8.2.2. Namely,
we prove that every coNP-language L has a polynomial-time reduc-
tion to BNHALTALL. Since L is in coNP, there exists a non-deterministic
polynomial-time Turing machine M which accepts x along every compu-
tation path of length at most p(|x|) if and only if x € L. We construct the
non-deterministic Turing machine Py » which (i) writes x on the tape,
(ii) does the same computation as M on the tape with input x, and (iii) if
M accepts x along a path, Py , halts along this path. If M rejects x along
a path, Py x loops along this path. Since (i) needs a polynomial number
q(|x|) steps and (iii) needs a constant number k of steps, we have that
x € Lif and only if

<pM’x’1q(\X\)+k+p(\x|)> € BNHALTALL.

Completeness again follows from Equation (6.2) by choosing computation
paths as a certificate, and a polynomial-time verifier that verifies the
computation along the given path. O

While reductions for undecidable problems usually stem from the deter-
ministic halting problem Hatr, here we need non-deterministic halting
problems in order to prove NP-hardness of the bounded versions. Canon-
ical extensions of the reductions from HArT to a non-deterministic halting
problem lead to different choices of root problems. For example, the Post
correspondence problem has a similar structure as NHatr, while the
structure of the tiling problem relates to NHartArLL. We will elaborate
on these structures in the corresponding sections.

We expect that other variants of the halting problem serve as root prob-
lems for other complexity results; see Section 8.4 for further discussion.
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Figure 8.2: The problems and reduc-
tions considered in this work. NHaLt
is the non-deterministic halting problem,
Pcr is the Post correspondence problem,
ReAcH is the reachability problem for re-
source theories, ZuLc is the zero in the
upper left corner problem, Mwm is the ma-
trix mortality problem, Mro is the posi-
tivity of Matrix product operators prob-
lem, Tsp is the stability of positive maps
problem and Poty is the polynomial pos-
itivity problem. NHALTALL is the non-
deterministic halting problem on all com-
putational paths, TiLE is the Wang tiling
problem, and Gsk is the ground state
energy problem. NHarr and NHaLTALL
are the root problems, and every arrow
corresponds to a reduction, explained in
the referenced subsection.

Instance
o]
Match
1 |20 012

Figure 8.3: An instance of Pcp is a set
of dominoes (top). This is a yes-instance
if they form a match (bottom), i.e. the
words on the top and the bottom coin-
cide.

8.3 A tree of undecidable problems and their
bounded versions

In this section, we apply Theorem 8.1.1 to several undecidable problems
in order to prove the NP-hardness of the bounded versions. The problems
studied in this paper are summarized in Figure 8.2, where every edge
corresponds to one application of the theorem.

o o
Tsp Pory
Sec. 835 Sec. 834
L o
Mro Mm
Sec. 833 Sec. 832

Reacu ZuLc
Sec.83.6 Sec. 832

Pcp
Sec. 8.31

NHacr

°
GsEg
Sec. 8.3.8
°
Tie
Sec.8.37
o

NHarrALL

RE-hard problems
with NP-hard
bounded version

RE-hard problems
with coNP-hard
bounded version

8.3.1 The Post correspondence problem

The Post correspondence problem (Pcp) [99] is an undecidable problem
with a particularly simple and intuitive formulation. For this reason,
it is often used to prove undecidable results in quantum information

theory [129], including a version of the matrix product operator positivity
problem [72], threshold-problems for probabilistic and quantum finite
automata [15], or reachability problems in resource theories [107]. It is

stated as follows:

Problem 8.3.1 (The Post correspondence problem)
Given two finite sets of words, {ay,...,a;} and {by,..., b} C ¥,
is there a finite sequence of indices iy, . . ., iy such that

ai, 4, - - - 4, = bi1bi2 e big ?
This decision problem is known to be RE-complete via a reduction from
the halting problem. Since a; and b; only appear in fixed pairs, this

problem has an equivalent formulation in terms of dominoes

)
=[]

The question is whether there exists a finite arrangement of dominoes
that form a match, i.e. where the upper and lower parts coincide when
the words are read across the dominoes (see Figure 8.3).

We define a bounded version of Pcp that checks for sequences of length
at most n:
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1tstep 2" step Kt step
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Figure 8.4: (Top) In the reduction NHaLt — Pcp, domino (a) contains the initial configuration of the TM, i.e. an empty tape with head at
position zero. Each computation step is simulated by copying the lower string to the upper part in green. This is done by applying a
transition domino (b), reproducing the tape (c), and adding a new empty tape slot (d). This generates a new string on the bottom, showing
the new instantaneous description (white). Repeating the procedure simulates the computation. (Bottom) The halting of the Turing
machine is mapped to the following match of tiles. When the Turing machine reaches the final state g, the instantaneous description is
successively removed by dominoes (e). Adding a final domino (f) guarantees the match.

Problem 8.3.2 (The bounded Post correspondence problem)

Given a finite set of dominoes {d1, ...,d;} and a number n € N in
unary, is there a matching arrangement of dominoes d; , . .., d;, with
< n?

This problem, denoted BPcp, is a bounded version of Pcp according to
Definition 8.1.1. It is known to be NP-complete (see [54, 67, 72] for the
ideas of the reductions). The basic idea of the reduction is analogous to
Theorem 8.1.1, i.e. using the reduction of the (unbounded) undecidable
problems to relate the bounding parameters via a polynomial-time map.
Yet, the usual reductions do not directly give rise to a polynomial relation
between the bounding parameters, contrary to what is claimed in [72].
We will now provide a reduction NHarr — Pcr leading to such a relation.
Our approach is similar to that of [115].

We define a map R mapping a description of a Turing machine to a set of
dominoes, R(T) := (dy, ..., dx). This map mimics the description of T
(see Figure 8.4). For example, d; is a domino whose lower string is given
by
Prgo !
where ! and * are separator symbols, and gy and , indicate that the
Turing machine head is initially in state gg acting on an empty tape.

Let us now provide the reduction NHarLt — Pcp in greater detail. The
following reduction modifies that of Ref. [115], so that the bounding
parameters of both problems are polynomially related.

We consider a Turing machine given by a tape alphabet X with blank
symbol , € X, a state set Q with an initial state g, final states F C Q,
and a transition function

0:Xx (Q\F) > X xQx{L,R}.

Without loss of generality, we consider here only semi-infinite tape Turing
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(i) An initial domino

!L][)u!

(ii) Forevery x € ¥, a copy domino

X

(ili) Transitions (g,x) — (4,y,L)

(iv) Transitions (g, x) — (4,y,R)

qrx

(v) A tape expander

|
TR

(vi) Forevery qf € F,y1,y2 € &

Vixq, %Y

(vii) Forevery qs € F,y1,)2 € Z

4 Y1~z

qr

(viii) A final domino

Figure 8.5: The necessary dominoes for
the reduction NHarr — PCP as well as
BNHarr — BPcp.

machines, i.e. having a tape with a left end but no right end. This is no
restriction for the complexity since semi-infinite tape Turing machines
are equivalent to standard Turing machines [2, Claim 1.4]. The set of
dominoes D is defined in Figure 8.5.

Note that the domino set D can be constructed in polynomial time from
T, and that | D| is polynomial in |Q] and |Z|.

Let us now apply this reduction to a non-deterministic Turing machine,
as the bounded version needs the latter. First note that the exclamation
marks serve as a separator between the instantaneous descriptions of
different computation steps, while the grey star separates every symbol
in the string. The lower part of the initial domino (i) represents the initial
tape configuration of the Turing machine together with its current head
state and position. Since the initial domino (i) is the only domino whose
first upper and lower symbols coincide, every match has to start with
the initial domino. A computation step along some computation path is
simulated by applying copy-dominoes (ii), transition dominoes (iii), (iv),
and tape expanders (v), according to Figure 8.4. If a computation reaches a
final state g, the final instantaneous description is successively removed
by applying dominoes (ii), (vi), (vii), and (v) according to Figure 8.4.
Finally, a match is obtained by adding (viii).

This implies that T halts on the empty tape along a computation path if
and only if D forms a match. Hence, R : NHart — Pcp is a reduction. It
follows that Pcp is RE-hard.

Note that simulating the k* computation step by a domino arrangement
requires precisely k 4 1 dominoes. When T reaches the final state after
n computation steps, the post-simulation procedure requires another
n + 1 repetitions, where each procedure needs precisely m = n + 1
arrangements with length starting with m and decreasing by 1. So T
halts after n computation steps on the empty tape if and only if the
corresponding domino set forms a match in at most

n n+1
gin) =1+> (k+1)+> k=(n+1)-(n+2)
k=1 k=1

steps, where the first sum represents the computation procedure and the
second sum the post-simulation procedure. Since R is a polynomial-time
reduction, using Theorem 8.1.1, this implies that

<T, 1n> N <R(T), 1(n+1)-(n+2)>

is a polynomial-time reduction from BNHALT to BPcp, which shows that
BPcp is NP-hard.

The map R is a polynomial-time map; in particular, the number of domi-
noes k is polynomial in the description size of T. From the construction
of R it follows that T halts on the empty tape if and only if there exists a
match of dominoes dj, . .., di. This implies that R is a polynomial-time
reduction from the non-deterministic halting problem, which implies
that Pcp is RE-hard.
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Refining this argument and using Theorem 8.1.1, we obtain that R can
be used as a reduction from BNHatr to BPcp. Each computation step of
T on the empty tape is simulated by attaching dominoes, as shown in
Figure 8.4. This procedure guarantees that T halts within 7 steps if and
only if dy, ..., d; form a match within

p(n) = (n+1)-(n+2)

steps. Hence, the halting time of T is polynomially related to the length
of a minimal match of R(T). This proves that BPcp is NP-hard by
Theorem 8.1.1.

Moreover, Pcp is RE-complete and BPcp is NP-complete, by taking match-
ing domino arrangements as certificates, and a polynomial-time verifier
that checks arrangements.

8.3.2 The zero in the upper left corner and the matrix
mortality problem

We now present the matrix mortality problem (short Mm) and the zero in
the upper left corner problem (short Zurc) with their bounded versions.
Both problems are undecidable and have been applied to prove the
undecidability of quantum information problems such as the positivity of
Matrix product operators [36] (see Section 8.3.3), the reachability problem
[129] (see Section 8.3.6), or the measurement occurrence problem [46].

Problem 8.3.3 (The matrix mortality problem)
Given Ay, ..., Ay € Maty(Q), is there a finite sequence iy, . .., iy €

{1,...,k} such that
A

I

Ay A, =072

]

Here, 0 denotes the zero matrix, and Mat,;(Q) the set of d x d matrices
over Q. ZuLc is almost identical to My, the only difference is that only the
upper left corner of the product A;, - A;, - - - A;, is asked to be zero. We
define the bounded matrix mortality problem (BMm) and the bounded
zero in the upper left corner problem (BZurc) by adding a parameter
n € N to every instance, and asking whether the desired zeros can be
realized within n matrix multiplications.

The undecidability of MM was first proven by Paterson [95]. Since then,
many tighter bounds on the number and size of matrices for both
problems have been found (see [24] and references therein). It is also
known that BMwm is NP-hard [17]. However, the proof relies on a reduction
from the NP-complete problem SAT and is therefore independent of the
original reduction proving undecidability. To the best of our knowledge,
the following is the first proof of the NP-hardness of these bounded matrix
problems using the same reductions as their unbounded versions.

We briefly sketch the reductions. Following [63], there exist polynomial-
time reductions R : Pcp — Zurcand Q : Zurc — Mwm with the following
properties:
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(i) The dominoes d = (dy, ..., dy) form a match of length n if and
only if the matrices

<N1,.. -/Nk’> = R(d)

multiply to a matrix with a zero in the upper left corner within n
matrix multiplications.

(ii) The matrices N := (Nj, ..., Ny) form a zero in the upper left corner
using 1 matrix multiplications if and only if the matrices

<M1,. ..,Mg/> = Q(N)

multiply to a zero matrix within # + 2 matrix multiplications.

Together with Theorem 8.1.1, these observations show that
{x,1%) = (R(x), 1)
is a polynomial-time reduction from BPcp to BZuLc, and
(2,1") = (Q(x),1"*2)

is a polynomial-time reduction from BZurc to BMm. This proves that
BZuLc and BMwm are NP-hard.

The Reduction to the Zero-in-the-upper-left-corner problem

Let us now present the reduction R : Pcp — ZuLc based on the ideas
of [63] in greater detail. For this purpose, we consider Pcp using strings
encoded in the alphabet ¥ = {0,1,2}. We define the bijection o : ¥* —
IN that assigns a representation in base 3 to every natural number, i.e.

n
o(c, ... cn) = Z C - 3t
i=1

Moreover, we define a function ¢ : Z* x £* — IN3*3 via

3wl 0 0
Y(wywy) =] 0 3l ¢
oc(wy) o(wp) 1

The function v is injective and a morphism, ie. y(wjuy, woup) =
y(w1, wy) - y(u1, up) where composition on £* is given by concatenation

of words. Let
—|" — | %
4 = L’l]’m'dk [bk]

be an instance of Pcr where a;,b; € *. Fori € {1,...,k}, we define the
matrices

Aj=X-y(a;b;)- X" Bj=X-7(a;0b;) - X!
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with
1 01
X=1]110
0 0 1
We have that
diydiy - - dj,

is a matching domino if and only if

(Mj, - Mjy -+ - Mj, )11 =0

in

where M, € {Ai]., Bij}- We refer to [63] for details. This shows that
R : Pcp — Zuic with

R((dl,...,dk>) = (Ai,..., Ay B, ..., By
is a polynomial-time reduction. This implies that Zurc is RE-hard.

Since matches of length 1 are mapped to matrix multiplications of length
n with a zero in the upper left corner, this shows that R, : BPcp — BZuLc
with

Rb(<d1,...,dk,1”>) = (A1,..., Ay B, ..., By, 1)

is a polynomial-time reduction. This implies that BZurc is NP-hard.

Note that the matricesin Ay, ..., Ag, Bq, . .., By are invertible, from which
it follows that ZuLc and BZurc remain RE-hard and NP-hard, respectively,
when restricting the instances to invertible matrices.

The Reduction to the Matrix Mortality problem

We now construct the reduction Q : Zurc — Mu following the ideas of
[63]. Since ZuLc remains hard when restricting the instances to invertible
matrices, we construct Q only for invertible matrices. So let (A1, ..., Ak)
be an instance of invertible matrices in ZuLc. We define

Q(<A1,...,Ak>) = <A1,...,Ak,B>

with

ool

|
o O =
o O O
o O O

We claim that Ay, ..., Ax forms a zero in the upper left corner if and
only if Ay, ..., Ax, B multiplies to a zero matrix. This proves that Mwm is
RE-hard. Moreover, we show that

nmin,MM[<A/ B>] = nmin,ZULc[<A>] + 2. (8-3)
where A represents the list Ay, ..., A.
To prove the claim, first note that if

(A, - Aiy -~ A =0,
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6: If it is an empty multiplication (i.e.
{; = 0), then we define M as the identity
matrix.

then

B'Ail'Aiz"'A 'B:(Ail'Aiz"'Ain)n:O-

in
In other words, a yes-instance of Zurc with parameter # is mapped to a

yes-instance in MM with parameter 7 + 2. This proves the inequality “<”
of Equation (8.3).

Conversely, assume that there exists a sequence of n matricesin { Ay, ... Ay, B}
that multiplies to 0. Since Ay, . .., Ay are invertible and B has rank 1, this
sequence must contain B at least twice. The product is of the form

M;BMyBM;3B---BM, =0

where M; is a multiplication of ¢; matrices in {Ay, ..., A;} for some £;.0
Since B is idempotent, we have that

0= (M;BM;BM;3B - - - BM,)

(BM;B*M,B>M3B? - - - B2M;,B) |
(M) gy -+ (Mr) gy

This implies that at least one of the matrices M; has a zero in the upper
left corner, which shows that Ay, ..., A; form a zero in the upper left
corner with a word of length n. Specifically, any minimal sequence of
matrices realizing 0 must be of the form

B-Aj Ay A, -B=0.

Note that a shorter such product cannot exist because it would violate
the proven inequality “<” of Equation (8.3). This representation proves
the inequality “>" of Equation (8.3), since

(Aj - Aiy -+ Ajy)n = 0.

In summary, Q: Zurc — Mwm is a reduction, which proves that Mw is
RE-hard. Moreover, Q: BZuLc — BMwM with

Qb : <A1, ey Ak, 1n> — <A1, ey Ak, B, 1n+2>
is a polynomial-time reduction too, which proves that BMwm is NP-hard.

Let us finally note that Mm and ZuLc are RE-complete, and their bounded
versions, BMm and BZuLc, are NP-complete by taking matching matrix
arrangements as certificates and a polynomial-time verifier checking the
statements.

8.3.3 The matrix product operator positivity problem

A Matrix Product operator (MPO) representation is a decomposition of a
multipartite operator into local tensors according to a one-dimensional
structure (see Section 2.3.5). A local tensor B defines a diagonal operator
0n(B) for every system size n (see Figure 8.6). More precisely, given a
family of D x D matrices (B;) fori € {1,...,d}, the diagonal ti MPO of
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size n is given by

d

Z tr (Bfl B]n) |j1,...

jlf---rjnzl

on(B) = ) el -

If these MPO should represent density matrices, then B should be
such that p,(B) is psd for every n. This property cannot be decided
algorithmically, not even for classical states. In other words, the following
Mpro problem is undecidable:

Problem 8.3.4 (The MPO positivity problem)

Given By, ..., By € Matp(Q), is there n € IN such that p,(B) is not

psd?

Note that an MPO is usually defined more generally; instead of restricting
to families of diagonal (classical) matrices B;, a general matrix product
operator is defined via families of D x D matrices (Bi,]-) fori,j=1,...,d,
addressing also non-diagonal entries of the matrix. However, as diagonal
MPOs are contained in this definition, the undecidability of Mro as we
defined it implies that the same problem for arbitrary matrix product
operators is also undecidable.

Similar to previous bounded versions, we define BMro by bounding the
system size n:

Problem 8.3.5 (The bounded MPO positivity problem)

Given By, ...,Byand n € N, is there an ¢ < 7 such that p;(B) is not
psd?

Note that Mro is usually stated in the negated way; yet, we use this
definition for consistency with the definition of bounding.

Let us now present a reduction R : ZuLc — MPpo, slightly different than
[36]. The Mro problem has as input a fixed number of D x D integer
matrices (B; : i € {1,...,k}) and asks whether there exists a natural
number 7 € IN such that

k
pn(B) = Z tr(Bil"'Bin)|i1-'-in> <111n
igeeyin=1
is not psd. We define

R({A1,...,AL)) = (By,..., By, Brsr)

B, = Ai®A; O
0 1

where fori € {1,...,k}

and

‘]'1 ‘]'2 «q ‘]'n
(_Bm 2RI e - pln]
A N B

Figure 8.6: Tensor network representa-
tion of the MPO p;, (B). The MPO prob-
lem asks: Given a tensor B, is p,, (B) psd
for all n? Note that in this setting the
tensors B have only one open index in
contrast to Figure 2.11.
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where Eq1 == [1) (1] with [1) = (1,0,...,0)" of length D.

We now prove that the threshold parameter n in BZurLc maps to the
threshold parameter 7 + 1 in BMro. Let A;,..., A;, be the minimal
sequence such that

In

(Ai, - Apy -+ Ayy)yy = 0.

Then,

2

tI'(Bil s Bin 'Bk+l) = (Ail 'Ai2 .- .Ain)ll —-1<0.

Conversely, let Bil, ...,B be a minimal sequence such that

in+1

tr(B;, - Bj, -+ B ) <0.

iy " Pip " int1
The indices iy, ...,i,41 cannot be chosen exclusively from {1,...,k},
since in that case

tr(B;, - B

B :(tr(Ail"'Ain+1))2+1>0‘

ip " Piy ” in+1)
Hence, there is at least one index iy = k 4 1. Assume that there is precisely
one index k + 1. Without loss of generality, we assume i, 11 = k + 1 due
to cyclicity of the trace. This leads to
2
0> tr(Bjy - By, - Bi,,) = ((Aiy - Aiy -+ Ay, )y )" — 1

which implies that (Al-1 S A ) 11 = 0 because the entries are
integer. This shows that a threshold parameter n + 1 in BMpro maps to
a threshold parameter of a most 7 in BZuLc. Note that having multiple
indices with k 4 1 leads to a smaller threshold parameter in BZurc which
contradicts the minimality assumption of B; , ..., B This proves the

statement.

in+1 :

This reduction can easily be extended to matrices with rational num-
bers.

In summary, R: ZuLc — Mpo is a reduction, which proves that Mro is
RE-hard. Moreover, by Theorem 8.1.1, R, : BZurc — BMro with

Rb : <A1, . ,Ak, 1n> — <B1, ey Bk, Bk+1/ 1n+1>
is a polynomial-time reduction too, which proves that BMro is NP-hard.

Moreover, Mpo is RE-complete and BMro is NP-complete by defining
negative diagonal entries as certificates.

While Mro precisely characterizes psd matrix product operators, in
practice, algorithms distinguishing MPOs that are sufficiently positive or
that violate positivity by at least an error € > 0 are often acceptable. This
is the idea behind weak membership problems. Along these lines, we
define the approximate Mpo problem Mro; as follows:

Problem 8.3.6 (The approximate positivity problem for MPO)

Given Cy,...,Cy € Matp(Q) with tr(py(C)) < 1 for every £ € N
and a family of errors (&) ey With 0 < €y < 1/ exp(¥). Decide the
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following:

(a) Acceptif 3n € N : p,,(C) + ¢,1 is not psd.
(b) Rejectif Vi € N : p,(C) — €, 1 is psd.

Mroy is undecidable using the same reduction as above and the fact that
tr(p,(C)) increases exponentially in 7 in the above reduction. Following
the usual bounding process, we define BMro, by bounding n:

Problem 8.3.7 (The bounded approximate positivity problem for
MPO)

Given Cy, ..., Cy € Matp(Q) with tr(p;(C)) < 1 for every £ € N,
a family of errors (e/)pen With 0 < g/ < 1/ exp(¢) and n € IN.
Decide the following:

(@) Acceptif 3¢ < n:py(C)+¢e,1 is not psd.
(b) Rejectif V¢ < n:py(C) —e,lis psd.

It follows that BMro is a bounded version of Mpo, according to Defini-
tion 8.1.1. Moreover, Theorem 8.1.1 implies that BMpo is also NP-hard.

We remark that Kliesch et al. [72] present a similar idea, by constructing a
reduction from Pcp to an alternative version of Mpro and bounding both
problems.

8.3.4 The polynomial positivity problem

The undecidability of Mpo leads to the undecidability of other positivity
problems. One of them concerns deciding the positivity of a certain class
of polynomials (see Section 7.3.3 and [39]):

Problem 8.3.8 (Polynomial positivity problem)

Given a family of polynomials g, (x) for ,f € {1,...,D} with
integer coefficients, is there an n € IN such that the polynomial

D
Pn (xm/ s '/x[n]) = Z Goy 2 (x[l]) C a0 (x[n]) (8.4)
01, =1
is not nonnegative (i.e. p,(a) < 0 for some a € R¥")?
Here x[! denotes a d-tuple of variables, for every i. We define this problem

as Pory and its bounded version (by restricting to checking nonnegativity
of py for k < n) by BPory.

We have that Pory is RE-hard by Theorem 7.3.8. Following the proof of
Theorem 7.3.8, there exists a polynomial-time map

R(<B1,...,Bk>) = <qa,/5:0(,‘321,...,D>

such that
pn(B) = 0if and only if p,, is nonnegative.

155
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7: We refer to Section 2.3.4 for its rela-
tion to the structure tensors on weighted
simplicial complexes.

This implies that (B,1") — (R(B),1") defines a reduction from BMro
to BPouy. It follows that BPovry is NP-hard.

Moreover, the threshold n for BMro is mapped to the threshold n for
BPory. It follows that BPory is NP-hard. Hence, BPory is NP-complete
by taking an arrangement of the matrices leading to a negative value
as a certificate, and a polynomial-time verification procedure of this
statement as a verifier.

8.3.5 Stability of positive maps

Another undecidable problem related to positivity concerns tensor prod-
ucts of positive maps. A map

P : Mat;(C) — Mat,(C)

is called positive if it maps psd matrices to psd matrices. Such a map is
called n-tensor-stable positive if P*" is a positive map, and tensor-stable
positive if it is n-tensor-stable positive for all n € IN. The existence of
non-trivial tensor-stable positive maps relates to the existence of NPT
bound-entangled states [87].

Let us define the n-fold Matrix Multiplication tensor’ as

S

) = D lar,a2) ® |ag,a3) @+ @ |ag, a)
gty =1
and denote the projection to this vector by
Xn = |xn) (xnl - (8.5)
The following problem is undecidable [48]:

Problem 8.3.9 (Positivity on a state problem)

Given a positive map P : Mat,;(C) — Mat,(C), is P®"(x») not psd
for some n € IN?

We denote this problem by Tsp. Its bounded version, BTsp takes instances
(P,1") and asks the same question for k-fold tensor products with
k<n.

Let us now review the reduction R : Mpo — Tsp of [48], which proves
that Tsp is RE-hard. The same reduction also yields that BTsp is NP-hard.

We map an instance

<Bl, e, Bk> € Matp, (Q) = Matp (Q) ® Matp (Q)

of Mpo to a linear map

P: Matp(Q) ®Matp(Q) — Mat;(Q)
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where
(Co) (ar2),(Br.2) = (Bi) (01, 81), (w2,2)
with ag, ap, B1, B2 € {1,...,D}. Then, we have that

(G & ©C) = (B, By

where ), is defined in (8.5). By construction, this implies that

P (xu) = pu(B).

In summary, (B, ..., Bx) € Mpo if and only if exists n € IN such that
P®"(xy,) is not psd. Furthermore, the threshold parameters in both
problems coincide for this reduction. It follows that BTsp is NP-hard.

8.3.6 The reachability problem in quantum information

The reachability problem in quantum information concerns the question
whether a resource state p (given as a density matrix) can be converted
to another state o by using only free resource operations from a fixed set
F = {®1,..., D} More precisely, we define ReacH as follows:

Problem 8.3.10 (Reachability in resource theories)

Given density matrices p, o € Mat,;(C) and a set F of free operations
Mat;(C) — Mat,(C), is there a map
D =P, oP;

In In—1

o---0P;

I

in the free semigroup F* such that o = ®(p)?

The free semigroup F* of F consists of all maps generated by finite
compositions of maps in F. We denote by F” the set of all operations
arising from at most n compositions of maps in F, and define the
bounded version BReacH by replacing F* with /" in the above problem
statement.

ReacH is undecidable via a reduction from Pcp [107]. We now prove that
the bounded version BREacH is NP-hard. We rely on Scandi and Surace’s
work [107], who provide a polynomial-time reduction R mapping domi-
noes d; to two types of resource maps HiA, G{\ for A € (0,1). The set of
free resource operations is then specified by

F={1,H})G}:i=1,...,rand A € (0,1)}.
For a state p € Maty(C), it is shown that

1
o= )\p—i—(l—)\)z
is reachable via operations in F* if and only if there exists a match of
the corresponding dominoes in Pcp. This shows that REach is RE-hard.

More specifically, there exists a match of length # if and only if

— An V. /\1 /\1 . An
U= Gin © © C;il © Hil © OHin (p)
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Instance

b [X] ¢
) P

Valid tiling

Figure 8.7: An instance of TiLE is a set of
tiles (top). A set of tiles is a yes-instance
if there exists a valid tiling of the plane.
Part of a potentially valid tiling is shown
on the right. In a valid tiling, the colors
of adjacent tiles must coincide and the
tiles cannot be rotated.

Qv
F
Instantaneous description
of the computation
Figure 8.8: In the reduction

NHactrAtr —  Tig, the instanta-
neous description of the Turing machine
is mapped to a horizontal configuration
of tiles, and every computational step is
mapped to a valid tiling of the horizontal
line above. The green tile is fixed at the
origin, while the orange tiles realize the
computation. The rest of the plane is
filled with trivial tiles, such as the empty
tiles (bottom) or tiles copying the tape
information (left and right). A Turing
machine halts along every path within n
steps if and only if the corresponding
tiling terminates after n horizontal lines.

for a choice Ay, ..., A, € (0,1). In other words, a threshold parameter n
in BPcp is mapped to a threshold 27 in BReach. This proves that BReacH
is NP-hard by applying Theorem 8.1.1.

8.3.7 The tiling problem

Let us now consider the Wang tiling problem. This problem has been
used to prove undecidability in many physics-related problems, like
the spectral gap problem in 2D [34], 2D PEPS problems [108], or the
universality of translational invariant, classical spin Hamiltonians in 2D
[75].

A tile is given by a square with different colors on each side of the tile
(see Figure 8.8). Given a finite set of tiles, a valid tiling is an arrangement
of tiles whose adjacent edges coincide. Moreover, all tiles have a fixed
orientation, i.e. they cannot rotate. We study the following variant:

Problem 8.3.11 (The tiling problem)

Given a set of tiles 7 = {t4, ..
when ¢; is in the origin?

., tk}, is it impossible to tile the plane

Note that this problem is usually stated in the negated form, but this
formulation is more convenient for our purposes. The constraint on the
fixed tile in the origin can also be removed [11, 104]; we stick to this version
for simplicity. The corresponding bounded version is the following:

Problem 8.3.12

Given a set of tiles 7 = {f1,...,t} and n € N, is it impossible to
tile Z2 when ¢ is in the origin?

Here we denote by Z2 = {—n,...,0,...,n}? the square grid of size
(2n+1) x (2n+ 1) around the origin.

Let us now sketch the proof that TiLe is RE-hard and that BT1LE is coNP-
hard. This will imply that the tiling problem in its usual formulation (“can
the plane be tiled?”) is coRE-hard and its bounded version is NP-hard.

In contrast to the previous examples, we now construct a reduction from
NHarcrAL instead of NHacr. While to check whether {dy,...,d;} isa
yes-instance of BPcp, one needs to find a single matching arrangement,
to verify whether {t1, ..., ¢} is a yes-instance of BTiLE one has to check
(for a fixed size 1) whether all arrangements of tiles in Z,% are invalid.
This structure is similar to NHarrALr, where for a fixed computation
time 1, one needs to check whether a given Turing machine T halts
on all computation steps. More precisely, there is a polynomial relation
between the bounding parameters of BTiLe and BNHALTALL, as needed
for Theorem 8.1.1.

We build a polynomial-time reduction from NHarrALL to TiLe following
[104]. The reduction maps a description of a Turing machine T to a set of
tiles representing either a slot in the tape or a computational step. The
(infinite) starting tape is mapped to the fixed origin tile representing the
empty tape with head position at zero. Filling up a new line corresponds to
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one computational step. This reduction also applies to non-deterministic
Turing machines.

The reduction is such that the tiling cannot be continued after filling up
n lines if and only if T halts on all computation paths after at most n
computational steps, see Figure 8.8. This proves that TiLE is undecidable.
By Theorem 8.1.1, we obtain that BTILE is coNP-hard, since the maximal
halting time 1 on every computation path is mapped to the termination
sizen + 1.

In addition, TiLE is RE-complete by taking a system size where all tilings
terminate as a certificate and an exponential-time verifier checking
all tilings of this size. BTILE is coNP-complete by choosing tilings as
a certificate and a polynomial-time verifier checking the validity of
the tiling. This highlights that when proving completeness, not every
construction in the unbounded case trivially translates to the bounded
version.

(i) Initial tile

—qOu—

l

Let us now review the reduction R : Hatr — Tice from [104]. A Turing (i) Empty tape extension
machine, consisting of a tape alphabet X with blank symbol , € %, a — o — — o —
state set Q with an initial state g and final states F C (), and a transition ‘ and |
function

0:Zx(Q\F) —-XxQx{L,R}
(iif) Empty tile

is mapped to the set of tiles shown in Figure 8.9.

This set of tiles captures the computation of a Turing machine on the
empty tape when placing the initial tile to the origin (see Figure 8.8). The
initial tile can only be extended to the left and to the right with the empty (iv) Trans. (x,q) — (¥/,4,R)
tape extension. We can also trivially tile the whole lower half of the plane

by applying the empty tile. L_I
q
The generated string gx
bowou fou uouu e (v) Trans. (x,q) — (x/,4,L)
-
at the top of the first line represents the instantaneous description of the g JT
Turing machine at time 0, namely an empty tape with the head at position [

0 and state gg. Simulating one step of the Turing machine corresponds to

filling up the line above of the current one. Specifically, on the top of the (vi)

initial tile, we need to place a transition tile (qg, ) — (§,x,L/R). Then ) )

we need to place a state merge tile on the left/right of the transition tile. %7 I:qy 1
and

State merge

This reflects the movement of the head to the left or right. The rest of the = i

1 T
line is filled with copy tiles. Ly — y

Again, the string at the top of the second line represents the initial (vii) Copy tile for x € X
description after one computation step. The same procedure applies to X =

every computation step. As soon as we apply a transition tile (g, x) — I: ‘T
(4£,y,L/R) for some final state q¢ € F, there is no tile to continue the x —
tiling procedure. In other words, every tiling procedure terminates in

line 7 if and only if T halts on the empty tape. Figure 8.9: The necessary tiles for the re-
duction NHarTArL — TiLe. State merge

The same reduction applies to non-deterministic Turing machines. In this s defined for every y € Zand g € Q,
whereas transitions are defined for every

situation, every tiling procedure terminates in 7 lines if and only if the such transition 5.
Turing machine halts on the empty tape along every computation path

in at most 1 steps. In other words, a Turing machine T halts on every
path in at most n steps if and only if Z,, 11 X Z,11 cannot be tiled. This
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proves that R : NHartALL — TiLE is a reduction. It follows that TiLE is
RE-hard.

Moreover, R is a polynomial-time map. Since the map between the
threshold parameters of NHarLrArL and Trie is given by n — n + 1,

(x,1") = (R(x),1"71)

is a reduction from BNHarTALL to BTie. This implies that BTiLE is
coNP-hard.

8.3.8 Ground state energy problem

We now study a version of the ground state energy problem. For this
purpose, we consider a spin system on a 2D grid. We assume that every
spin takes values in a set S. Given coupling functions h*, Y : S x § — N
and a local field 1!°¢ : S — IN, we define the Hamiltonian

Hy(s) = 1 (s00) + Z h*(sa, sp) + Z hY (sa, sp)
(ab)x (ab)y

where s = (si]-) 0,..,n} 18 @ given spin configuration on the grid

ije{-n,..,
72 taking values in S and s,, sp, denote the elements with coordinates
a and b in this array. Moreover, (a,b), /y denotes all neighbors in x/y-
direction on Z2 where the a has a smaller x /y-coordinate than b. Hence,
H,, is translational invariant except for the local field on the spin in the

origin.

We start by defining the bounded version of this problem, namely the
bounded ground state energy problem BGsk:

Problem 8.3.13 (The bounded ground state energy problem)

Given system size n € IN, non-negative functions h*, hY, hoc and
energy E € Q, is the ground state energy Enin(H,) > E?

A function /1 is non-negative if it is non-negative on its whole domain. Note
that BGse is indeed a bounded version, as Emin (Hy11) = Emin(Hn) > E
since all couplings are non-negative. Further note that BGsk is usually
formulated in the negated way, i.e. the question is if there exists a spin
configuration whose energy is below the threshold E.

We now extend BGsk to an unbounded ground state energy problem
GsE:

Problem 8.3.14 (The (unbounded) ground state energy problem)

Given non-negative functions h*, h¥, h' and an energy E € Q, is there
ann € N such that Epin(Hy,) > E?

Note that BGse is the bounded version of Gse according to Defini-
tion 8.1.1.

Let us show that Gsk is RE-hard and BGsk is coNP-hard by a reduction
R : Tie — Gsk (see Figure 8.10). Given a set of tiles T = {t1,...,t},
we define the set of spin states as the set of tiles S := 7. Since each tile



(a) — t;= (m,m,0,0)
PR S L
o7 e ‘e .
(b) — )
e NN
AT T e

is specified by four colors in a color space C, it can be represented as a
4-tuple
t = (th, tE, 12, th>

where the entries represent the colors on the top, right, bottom, and
left of the tile. We define the coupling function so that a valid tiling
with t1 in the origin maps to a spin configuration of energy 0, and every
inconsistent color pairing in an invalid tiling gives an additional energy
penalty of 1. More precisely,

and h(s,8) =1—4(s",8%).
where 5,5 € S. According the definition of Hy, the first component of
h* addresses the spin on the left and the second the spin on the right
while the first component of ¥ addresses the spin on the bottom and the
second the spin on the top. Moreover, we define

B (s) :=1—6(s, 1y).

Note that H;, has a ground state of energy zero if and only if there exists
a valid tiling of Z2 with tile t; at the origin. That is, Epin(H,) > 0 if
and only if there is no valid tiling of size n. This guarantees that R is a
reduction. Additionally, we obtain a reduction from BTiLe to BGsE since
the bounding parameters are identical. Similar to the tiling problem, one
can show that Gse is RE-complete and BGsE is coNP-complete.

Note that non-translational invariant versions of BGsEe are known to
be coNP-hard since their negated versions are NP-hard. In particular,
the ground state energy problem for 2D Ising models with fields is
NP-complete [4].

8.4 Conclusions and outlook

In this work, we have shown a relation between the hardness of an (un-
bounded) problem and the hardness of its bounded version. In particular,
we have defined a bounded version of a language (Definition 8.1.1) and
given a condition under which a reduction between the unbounded
problems translates to a reduction between their bounded versions (The-
orem 8.1.1). We have also applied this result to two classes of examples
(Section 8.3): First, we showed that RE-hard problems like Pcp, Mro,
or ReacH have an NP-hard bounded version; Second, we showed that
RE-hard problems like TrLe and Gsk have a coNP-hard bounded version.

8.4 Conclusions and outlook 161

Figure 8.10: In the reduction TiLe — Gsk,
(a) every tile t; is mapped to a spin state
s;. (b) Every (valid and invalid) tiling
maps to a spin configuration. A tiling of
size n is valid iff the corresponding spin
configuration is the ground state of Hy,
with energy 0.
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8: Recall that a Diophantine equation is
a polynomial over the integers whose
solutions need to be integers.

It would be interesting to extend this work to problems in quantum
physics such as the spectral gap problem [34, 8] or membership problems
for quantum correlations [116, 117, 70, 53, 86]. A bounded version of
the latter uses the dimension of the entangled state as the bounding
parameter.

Another open question is whether the undecidability of Diophantine
equations [83] and the NP-hardness of its bounded version [81] fits into
our framework.? In this context, the unbounded problem is as follows:

Problem 8.4.1 (Solvability of Diophantine equations)

Given a Diophantine equation p(x,y) = 0 with 2k variables, and
a k-tuple of integers a € ZK, does there exist b € Z* such that
p(a,b) =0?

Note that here k is fixed. The bounded version would restrict to values
b e {—n, e, n}k, where 1 acts as the bounding parameter.

Are there also hard bounded versions with other types of complexity,
such as QMA-hard [127] bounded versions? While we only considered the
scenario of RE-hard problems with either NP-hard or coNP-hard bounded
versions, there might be “root problems” whose bounded version is
neither NP-hard or coNP-hard. Natural candidates for QMA-hard bounded
version are the bounded /unbounded satisfiability problems of quantum
circuits [21], which concerns Turing machines generating polynomial-
size quantum circuits. The results of this work would imply that certain
QMA-hard problems, like the ground state energy problem for k-local
quantum Hamiltonians [71], relate to unbounded problems which are
undecidable.

Finally, is it possible to prove the converse direction of Theorem 8.1.1?
Since bounded languages give rise to a unique unbounded language,
can every reduction between bounded versions be transferred to a
reduction between the corresponding unbounded problems? If the
bounded reduction is of the special form

Ry« {x,m) = (R(x),p(n))

with p being a strictly increasing polynomial, then R is automatically a
reduction between the unbounded problems. Yet, the question is open
for general Ry,
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List of notations

The next list describes several symbols that are used within the body of the document.

BGse The bounded ground state energy problem.

BHarLr The bounded halting problem.

BMm The bounded matrix mortality problem.

BMro The bounded positivity problem for matrix product operators.
BNHArLT The bounded non-deterministic halting problem.

BNHAarTALL The bounded version of NHALTALL.

BPcp The bounded Post correspondence problem.

BPoLy The bounded polynomial positivity problem.

BREeacH The bounded reachability problem in resource theories.
BTsp The bounded positivity on a state problem

BTiLE The bounded tiling problem

BZuLc The bounded zero-in-the-upper-left-corner problem.
coNP The complement of NP.

deg(p) The degree of the polynomial p.

deg,..(p) The local degree of the polynomial p.

GsE The (unbounded) ground state energy problem.
Harr The halting problem.

Her;(C) The set of d x d complex hermitian matrices.
Pcr The Post correspondence problem.

Mat, (K) The set of d x d matrices with elements from K.

Mat,  (K) The set of d X k matrices with elements from K.

Q[i] The field of complex numbers with rational real and imaginary parts.
Os(K) The group of orthogonal matrices over the field K.

Us(K) The group of unitary matrices over the field K.

MM The matrix mortality problem.

Mro The positivity problem for matrix product operators.

NHatLr The non-deterministic halting problem.



NHarrArL
nn-rank
NP

p

Pory
Psd;(C)
psd-rank
puri-rank
R

rank

RE

RE

Reacun
sep-rank
sos-rank
Tsp

Tie

The non-deterministic halting problem on all paths.
The nonnegative rank.

The set of non-deterministic polynomial-time decidable languages.
The set of polynomial-time decidable languages.
The polynomial positivity problem.

The set of d x d positive semidefinite matrices.
The positive semidefinite rank.

The purification rank.

The set of recursive (decidable) languages.

The (unconstrained) rank.

The set of co-recursively enumerable languages.
The set of recursively enumerable languages.
The reachability problem in resource theories.
The separable rank.

The sum-of-squares rank.

The positivity on a state problem.

The tiling problem.

The zero-in-the-upper-left-corner problem.

The matrix A is positive semidefinite.

The transpose of a matrix A.

The Hermitian transpose of a matrix A.

The set {1,...,n}.

The line with n vertices.

The set of positive natural numbers {1,2,3,...}.
The simplex with 1 vertices.

The cycle with 1 vertices.

The cyclic group with n elements.

The full permutation group on n elements.



List of abbreviations

cp completely positive.

cpsd  completely positive semidefinite.

cpsdt completely positive semidefinite transpose.
cptp  completely positive trace preserving.
LPDO locally purified density operator.

LRS  linear recurrence sequence.

MaMu matrix multiplication.

MPDO matrix product density operator.

MPO  matrix product operator.

MPS  matrix product state.

POVM positive operator-valued measurement.
psd  positive semidefinite.

s0s sum-of-squares.

ti translational invariant.

WSC  weighted simplicial complex.
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